How to Create a Performance Model of a Gas Turbine From a Limited Amount of Information

Author(s):  
Joachim Kurzke

Gas turbine manufacturers develop complex performance simulation models for their products; these proprietary models are based on design information and the many measurements taken during engine development. For subcontractors in collaborative projects, for gas turbine users and outsiders there is often only a limited amount of data accessible for creating a performance model of the engine. User-friendly, accurate and fast PC-based engine simulation tools are available for anybody from several sources. With these tools it is possible to create from a limited amount of data full thermodynamic models. In this paper a methodology is presented which minimizes the effort needed for creating such models. It consists of four steps: Firstly a suitable cycle reference point is chosen and the model is tailored to the data of this point. Secondly compressor and turbine maps are added and scaled such that they fit exactly to the cycle reference point. In this step a second operating point is considered and the location of the cycle reference point in the component maps is adapted such that the simulation fits optimally to the given data of the second point. In a third step, the rest of the data are compared graphically with the simulation. Here many modelers fall in a trap: They plot the data versus spool speed as x-axis because speed is accurately measurable and regarded as reliable information. However, spool speed is — from the view of thermodynamics — a parameter of secondary importance. If the correlation of spool speed with corrected flow in the compressor map is incorrect — which is very probable at the beginning of the modeling process — then all graphics will show discrepancies. This makes the adaptation of the model to the data an extended iterative process. If one uses for the model checks a primary thermodynamic parameter — like corrected mass flow, overall pressure ratio or thrust respectively shaft power — as basis then the task is very much simplified. In the fourth and final step the speed values in the estimated compressor maps are adjusted. This has little effect on the matching accuracy of the previous steps, so the model is finished quickly. The procedure is demonstrated by creating a model for a two-spool turbojet which was tested over quite a range of operating conditions in an altitude test facility. Without much iteration a model is quickly created which matches all the measured data within the quoted uncertainty of the measurements.

Author(s):  
Balaji Sankar ◽  
Thennavarajan Subramanian ◽  
Brijeshkumar Shah ◽  
Vijayendranath Vanam ◽  
Soumendu Jana ◽  
...  

The user community of civil and military aircraft powered by gas turbine engines has a significant interest on simulation models for design, development and maintenance activities. These play a crucial role in understanding the aircraft mission performance. The simulation models can be used to understand the behavior of gas turbine engine running at various operating conditions, which are used for studying the aircraft performance and also vital for engine diagnostics. Other significant advantage of simulation model is that it can generate required data at intermediate stages in gas turbine engine, which sometimes cannot be obtained by measurement. Thus engine simulation model / virtual engine building is one of the important aspects towards development of Engine Health Management (EHM) system. This paper describes in detail the engine simulation model development for a typical twin spool turbo jet engine using commercially available Gas turbine Simulation Program (GSP). The engine simulation model has been used for typical aero-engine to get aero-thermodynamic gas path performance analysis related to engine run at Design point, Off Design points and the engine Acceleration-Deceleration Cycles (ADC). Simulations at different operating conditions have been carried out using scaled up characteristic maps of engine components. Design point data as well as engine gas path data obtained from test bed has been used to develop scaled up characteristic maps of the engine components. The simulation results have been compared with various test bed data sets for the purpose of validation. Predicted results of engine parameters like engine mass flow rate and thrust are in good agreement with the test bed data. This validated model can be used to simulate faulty engine components and to develop the fault identification modules and subsequently an EHM system.


Author(s):  
C. Klein ◽  
S. Reitenbach ◽  
D. Schoenweitz ◽  
F. Wolters

Due to a high degree of complexity and computational effort, overall system simulations of jet engines are typically performed as 0-dimensional thermodynamic performance analysis. Within these simulations and especially in the early cycle design phase, the usage of generic component characteristics is common practice. Of course these characteristics often cannot account for true engine component geometries and operating characteristics which may cause serious deviations between simulated and actual component and overall system performance. This leads to the approach of multi-fidelity simulation, often referred to as zooming, where single components of the thermodynamic cycle model are replaced by higher-order procedures. Hereby the consideration of actual component geometries and performance in an overall system context is enabled and global optimization goals may be considered in the engine design process. The purpose of this study is to present a fully automated approach for the integration of a 3D-CFD component simulation into a thermodynamic overall system simulation. As a use case, a 0D-performance model of the IAE-V2527 engine is combined with a CFD model of the appropriate fan component. The methodology is based on the DLR in-house performance synthesis and preliminary design environment GTlab combined with the DLR in-house CFD solver TRACE. Both, the performance calculation as well as the CFD simulation are part of a fully automated process chain within the GTlab environment. The exchange of boundary conditions between the different fidelity levels is accomplished by operating both simulation procedures on a central data model which is one of the essential parts of GTlab. Furthermore iteration management, progress monitoring as well as error handling are part of the GTlab process control environment. Based on the CFD results comprising fan efficiency, pressure ratio and mass flow, a map scaling methodology as it is commonly used for engine condition monitoring purposes is applied within the performance simulation. Hereby the operating behavior of the CFD fan model can be easily transferred into the overall system simulation which consequently leads to a divergent operating characteristic of the fan module. For this reason, all other engine components will see a shift in their operating conditions even in case of otherwise constant boundary conditions. The described simulation procedure is carried out for characteristic operating conditions of the engine.


Author(s):  
S. Esakki Muthu ◽  
S. Dileep ◽  
S. Saji Kumar ◽  
D. K. Girish

Life estimation of Directionally Solidified (DS) MARM-247 HPT gas turbine blade used in a turbofan engine of a supersonic aircraft is presented. These blades were drafted into the engine as a replacement for the polycrystal (NIMONIC) blades since a more efficient, reliable and durable material with high strength and temperature resistance was required to further enhance the life of the turbine blade and the efficiency of the power generation process. The supersonic aircraft is having a repeated mission cycle of a fast acceleration from idle, a 1hr cruise at Mach 1.5 and a fast deceleration to idle. The mission cycle which is a repetition of acceleration, cruise and deceleration cycles can produce wide variety of complex loading conditions which can result in HCF, LCF and creep damage of the turbine blade. Empirical equation of the universal slope developed by Manson was used to estimate the damage component due to LCF. The cumulative stresses and strains due to creep as a function of time was determined using Time hardening rule. Creep data for MARM-247 was correlated using LMP to predict the lives to 1% of creep strain at worst possible combination of temperature and stress value. Damage due to creep per mission cycle was determined using Life fraction Rule proposed by Robinson and Taira. The vibration characteristics of the turbine blade were predicted using Modal analysis. Campbell diagram was plotted to ascertain whether any nozzle passing frequency fall within the working range of the blade. Harmonic analysis was carried out to evaluate the magnitude of the alternating stresses resulting from the blade vibrations at resonance during the acceleration and deceleration cycle. HCF life of the turbine blade was assessed using Goodman diagram. The total damage of the turbine blade per mission cycle due to the above loading was assumed as the combination of the individual damage due to fatigue and creep. Time to failure under combined creep and fatigue damage was estimated using linear damage rule. Non linear features of FEA tool ANSYS12.0 was exploited to calculate the stress distribution, creep, plastic and the total strain encountered by the turbine blade as a function of mission cycle time. The loading spectrum associated with the mission cycle which includes the temperature, gas pressure and the speed profiles were obtained from a sophisticated engine ground test facility which was configured to simulate actual engine operating conditions. The proposed method of cyclic life estimation using FEM was validated by performing various component and engine level tests. A good agreement was observed between the calculated and observed blade lives.


Author(s):  
Godwin Ita Ekong ◽  
Christopher A. Long ◽  
Peter R. N. Childs

Compressor tip clearance for a gas turbine engine application is the radial gap between the stationary compressor casing and the rotating blades. The gap varies significantly during different operating conditions of the engine due to centrifugal forces on the rotor and differential thermal expansions in the discs and casing. The tip clearance in the axial flow compressor of modern commercial civil aero-engines is of significance in terms of both mechanical integrity and performance. In general, the clearance is of critical importance to civil airline operators and their customers alike because as the clearance between the compressor blade tips and the casing increases, the aerodynamic efficiency will decrease and therefore the specific fuel consumption and operating costs will increase. This paper reports on the development of a range of concepts and their evaluation for the reduction and control of tip clearance in H.P. compressors using an enhanced heat transfer coefficient approach. This would lead to improvement in cruise tip clearances. A test facility has been developed for the study at the University of Sussex, incorporating a rotor and an inner shaft scaled down from a Rolls-Royce Trent aero-engine to a ratio of 0.7:1 with a rotational speed of up to 10000 rpm. The idle and maximum take-off conditions in the square cycle correspond to in-cavity rotational Reynolds numbers of 3.1×106 ≤ Reφ ≤ 1.0×107. The project involved modelling of the experimental facilities, to demonstrate proof of concept. The analysis shows that increasing the thermal response of the high pressure compressor (HPC) drum of a gas turbine engine assembly will reduce the drum time constant, thereby reducing the re-slam characteristics of the drum causing a reduction in the cold build clearance (CBC), and hence the reduction in cruise clearance. A further reduction can be achieved by introducing radial inflow into the drum cavity to further increase the disc heat transfer coefficient in the cavity; hence a further reduction in disc drum time constant.


Author(s):  
Mohammad R. Saadatmand

The aerodynamic design process leading to the production configuration of a 14 stage, 16:1 pressure ratio compressor for the Taurus 70 gas turbine is described. The performance of the compressor is measured and compared to the design intent. Overall compressor performance at the design condition was found to be close to design intent. Flow profiles measured by vane mounted instrumentation are presented and discussed. The flow through the first rotor blade has been modeled at different operating conditions using the Dawes (1987) three-dimensional viscous code and the results are compared to the experimental data. The CFD prediction agreed well with the experimental data across the blade span, including the pile up of the boundary layer on the corner of the hub and the suction surface. The rotor blade was also analyzed with different grid refinement and the results were compared with the test data.


Author(s):  
Thomas Mosbach ◽  
Victor Burger ◽  
Barani Gunasekaran

The threshold combustion performance of different fuel formulations under simulated altitude relight conditions were investigated in the altitude relight test facility located at the Rolls-Royce plc. Strategic Research Centre in Derby, UK. The combustor employed was a twin-sector representation of an RQL gas turbine combustor. Eight fuels including conventional crude-derived Jet A-1 kerosene, synthetic paraffinic kerosenes (SPKs), linear paraffinic solvents, aromatic solvents and pure compounds were tested. The combustor was operated at sub-atmospheric air pressure of 41 kPa and air temperature of 265 K. The temperature of all fuels was regulated to 288 K. The combustor operating conditions corresponded to a low stratospheric flight altitude near 9 kilometres. The experimental work at the Rolls-Royce (RR) test-rig consisted of classical relight envelope ignition and extinction tests, and ancillary optical measurements: Simultaneous high-speed imaging of the OH* chemiluminescence and of the soot luminosity was used to visualize both the transient combustion phenomena and the combustion behaviour of the steady burning flames. Flame luminosity spectra were also simultaneously recorded with a spectrometer to obtain information about the different combustion intermediates and about the thermal soot radiation curve. This paper presents first results from the analysis of the weak extinction measurements. Further detailed test fuel results are the subject of a separate complementary paper [1]. It was found in general that the determined weak extinction parameters were not strongly dependent on the fuels investigated, however at the leading edge of the OH* chemiluminescence intensity development in the pre-flame region fuel-related differences were observed.


2021 ◽  
Vol 13 (24) ◽  
pp. 13678
Author(s):  
Anton Petrochenkov ◽  
Aleksandr Romodin ◽  
Vladimir Kazantsev ◽  
Aleksey Sal’nikov ◽  
Sergey Bochkarev ◽  
...  

The purpose of the study is to analyze the prospects for the development of loading methods for gas turbines as well as to develop a mathematical model that adequately describes the real operating conditions of the loading system at various loads and rotation speeds. A comparative analysis of the most common methods and technical means of loading the shafts of a free turbine at gas turbine plants intended for operation as part of gas pumping units is presented. Based on the results of the analysis, the expediency of using the loading model “Free Power Turbine Rotor–Hydraulic Brake” as a load simulation is shown. Recommendations for the creation of an automation system for the load testing of power plants have been developed. Mathematical models and Hardware-in-the-Loop simulation models of power plants have been developed and tested. One of the most important factors that predetermine the effectiveness of the loading principle is the possibility of software implementation of the loading means using software control systems that provide the specified loading parameters of the gas turbine.


Author(s):  
Timothy S. Snyder ◽  
Thomas J. Rosfjord ◽  
John B. McVey ◽  
Aaron S. Hu ◽  
Barry C. Schlein

A dry-low-NOx, high-airflow-capacity fuel injection system for a lean-premixed combustor has been developed for a moderate pressure ratio (20:1) aeroderivative gas turbine engine. Engine requirements for combustor pressure drop, emissions, and operability have been met. Combustion performance was evaluated at high power conditions in a high-pressure, single-nozzle test facility which operates at full baseload conditions. Single digit NOx levels and high combustion efficiency were achieved A wide operability range with no signs of flashback, autoignition, or thermal problems was demonsuated. NOx sensitivities 10 pressure and residence time were found to be small at flame temperatures below 1850 K (2870 F). Above 1850 K some NOx sensitivity to pressure and residence Lime was observed and was associated with the increased role of the thermal NOx production mechanism at elevated flame temperatures.


Author(s):  
Erlendur Steinthorsson ◽  
Adel Mansour ◽  
Brian Hollon ◽  
Michael Teter ◽  
Clarence Chang

Participating in NASA’s Environmentally Responsible Aviation (ERA) Project, Parker Hannifin built and tested multipoint Lean Direct Injection (LDI) fuel injectors designed for NASA’s N+2 55:1 Overall Pressure-Ratio (OPR) gas turbine engine cycles. The injectors are based on Parker’s earlier three-zone injector (3ZI) which was conceived to enable practical implementation of multipoint LDI schemes in conventional aviation gas turbine engines. The new injectors offer significant aerodynamic design flexibility, excellent thermal performance, and scalability to various engine sizes. The injectors built for this project contain 15 injection points and incorporate staging to enable operation at low power conditions. Ignition and flame stability were demonstrated at ambient conditions with ignition air pressure drop as low as 0.3% and fuel-to-air ratio (FAR) as low as 0.011. Lean Blowout (LBO) occurred at FAR as low as 0.005 with air at 460 K and atmospheric pressure. A high pressure combustion testing campaign was conducted in the CE-5 test facility at NASA Glenn Research Center at pressures up to 250 psi and combustor exit temperatures up to 2,033 K (3,200 °F). The tests demonstrated estimated LTO cycle emissions that are about 30% of CAEP/6 for a reference 60,000 lbf thrust, 54.8-OPR engine. This paper presents some details of the injector design along with results from ignition, LBO and emissions testing.


Author(s):  
Geoff Jones ◽  
Pericles Pilidis ◽  
Barry Curnock

The choice of how to represent the performance of the fans and compressors of a gas turbine engine in a whole-engine performance model can be critical to the number of iterations required by the solver or indeed whether the system can be solved. This paper therefore investigates a number of compressor modelling methods and compares their relative merits. Particular attention is given to investigating the ability of the various representations to model the performance far from design point. It is noted that, for low rotational speeds and flows, matching on pressure ratio will produce problems, and that efficiency is a discontinuous function at these conditions. Thus, such traditional representations of compressors are not suitable for investigations of starting or windmilling performance. Matching on pressure ratio, Beta, the Crainic exit flow function and the true exit flow function is investigated. The independent parameters of isentropic efficiency, pressure loss, a modified pressure loss parameter, specific torque, and ideal and actual enthalpy rises are compared. The requirements of the characteristic choice are investigated, with regard to choosing matching variables and ensuring that relationships are smooth and continuous throughout the operating range of the engine.


Sign in / Sign up

Export Citation Format

Share Document