Flame Ionization Distribution and Dynamics Monitoring in a Turbulent Premixed Combustor

Author(s):  
B. T. Chorpening ◽  
E. D. Huckaby ◽  
M. L. Morris ◽  
J. D. Thornton ◽  
K. J. Benson

To achieve very low NOx emission levels, lean-premixed gas turbine combustors have been commercially implemented which operate near the fuel-lean flame extinction limit. Near the lean limit, however, flashback, lean blowoff, and combustion dynamics have appeared as problems during operation. To help address these operational problems, a combustion control and diagnostics sensor (CCADS) for gas turbine combustors is being developed. CCADS uses the electrical properties of the flame to detect key events and monitor critical operating parameters within the combustor. Previous development efforts have shown the capability of CCADS to monitor flashback and equivalence ratio, and progress has been made on detecting and measuring combustion instabilities. In support of this development, a highly instrumented atmospheric combustor has been used to measure the pressure oscillations in the combustor, the ultraviolet flame emission, and the flame ion field at the premix injector outlet and along the walls of the combustor. This instrumentation allows examination of the downstream extent of the combustion field using both the ultraviolet (mostly OH*) emission and the corresponding electron and ion distribution near the walls of the combustor. During testing the combustion dynamics were controlled using a fuel feed impedance control technique. This provided flame ionization measurements for both steady and unsteady combustion, without changing the operating parameters of the combustor. Previous testing in this combustor had fewer data acquisition channels, and did not include a full implementation of a CCADS centerbody. This testing included both the guard and sense CCADS electrodes installed on the nozzle centerbody, and an array of 14 wall mounted spark plugs to monitor the flame ionization downstream along the walls of the combustor. This paper reports the results of this testing, focusing on the relationship between the flame ionization, ultraviolet flame emission, and pressure oscillations. Tests were run over a matrix of equivalence ratios from 0.6 to 0.8, with inlet reference velocities of 20 and 25 m/s. The acoustics of the fuel system for the combustor were tuned using an active-passive technique with an adjustable quarter-wave resonator. Data processing included computing the logarithm of the real-time current signal from the guard electrode, to compensate for the exponential decay of the potential field from the electrode. The data show the standard deviation of the guard current to be the most promising statistic investigated for correlation with the standard deviation of the chamber pressure. This correlation could expand the capabilities of CCADS to allow for dynamic pressure monitoring on commercial gas turbines without a pressure transducer.

2006 ◽  
Vol 129 (2) ◽  
pp. 352-357 ◽  
Author(s):  
B. T. Chorpening ◽  
J. D. Thornton ◽  
E. D. Huckaby ◽  
K. J. Benson

To achieve very low NOx emission levels, lean-premixed gas turbine combustors have been commercially implemented that operate near the fuel-lean flame extinction limit. Near the lean limit, however, flashback, lean blow off, and combustion dynamics have appeared as problems during operation. To help address these operational problems, a combustion control and diagnostics sensor (CCADS) for gas turbine combustors is being developed. CCADS uses the electrical properties of the flame to detect key events and monitor critical operating parameters within the combustor. Previous development efforts have shown the capability of CCADS to monitor flashback and equivalence ratio. Recent work has focused on detecting and measuring combustion instabilities. A highly instrumented atmospheric combustor has been used to measure the pressure oscillations in the combustor, the OH emission, and the flame ion field at the premix injector outlet and along the walls of the combustor. This instrumentation allows examination of the downstream extent of the combustion field using both the OH emission and the corresponding electron and ion distribution near the walls of the combustor. In most cases, the strongest pressure oscillation dominates the frequency behavior of the OH emission and the flame ion signals. Using this highly instrumented combustor, tests were run over a matrix of equivalence ratios from 0.6 to 0.8, with an inlet reference velocity of 25m∕s(82ft∕s). The acoustics of the fuel system for the combustor were tuned using an active-passive technique with an adjustable quarter-wave resonator. Although several statistics were investigated for correlation with the dynamic pressure in the combustor, the best correlation was found with the standard deviation of the guard current. The data show a monotonic relationship between the standard deviation of the guard current (the current through the flame at the premix injector outlet) and the standard deviation of the chamber pressure. Therefore, the relationship between the standard deviation of the guard current and the standard deviation of the pressure is the most promising for monitoring the dynamic pressure of the combustor using the flame ionization signal. This addition to the capabilities of CCADS would allow for dynamic pressure monitoring on commercial gas turbines without a pressure transducer.


Author(s):  
B. T. Chorpening ◽  
J. D. Thornton ◽  
E. D. Huckaby ◽  
K. J. Benson

To achieve very low NOx emission levels, lean-premixed gas turbine combustors have been commercially implemented which operate near the fuel-lean flame extinction limit. Near the lean limit, however, flashback, lean blowoff, and combustion dynamics have appeared as problems during operation. To help address these operational problems, a combustion control and diagnostics sensor (CCADS) for gas turbine combustors is being developed. CCADS uses the electrical properties of the flame to detect key events and monitor critical operating parameters within the combustor. Previous development efforts have shown the capability of CCADS to monitor flashback and equivalence ratio. Recent work has focused on detecting and measuring combustion instabilities. A highly instrumented atmospheric combustor has been used to measure the pressure oscillations in the combustor, the OH emission, and the flame ion field at the premix injector outlet and along the walls of the combustor. This instrumentation allows examination of the downstream extent of the combustion field using both the OH emission and the corresponding electron and ion distribution near the walls of the combustor. In most cases, the strongest pressure oscillation dominates the frequency behavior of the OH emission and the flame ion signals. Using this highly instrumented combustor, tests were run over a matrix of equivalence ratios from 0.6 to 0.8, with an inlet reference velocity of 25 m/s. The acoustics of the fuel system for the combustor were tuned using an active-passive technique with an adjustable quarter-wave resonator. Although several statistics were investigated for correlation with the dynamic pressure in the combustor, the best correlation was found with the standard deviation of the guard current. The data show a monotonic relationship between the standard deviation of the guard current (the current through the flame at the premix injector outlet) and the standard deviation of the chamber pressure. Therefore, the relationship between the standard deviation of the guard current and the standard deviation of the pressure is the most promising for monitoring the dynamic pressure of the combustor using the flame ionization signal. This addition to the capabilities of CCADS would allow for dynamic pressure monitoring on commercial gas turbines without a pressure transducer.


Author(s):  
Salvatore Matarazzo ◽  
Hannes Laget ◽  
Evert Vanderhaegen ◽  
Jim B. W. Kok

The phenomenon of combustion dynamics (CD) is one of the most important operational challenges facing the gas turbine (GT) industry today. The Limousine project, a Marie Curie Initial Training network funded by the European Commission, focuses on the understanding of the limit cycle behavior of unstable pressure oscillations in gas turbines, and on the resulting mechanical vibrations and materials fatigue. In the framework of this project, a full transient CFD analysis for a Dry Low NOx combustor in a heavy duty gas turbine has been performed. The goal is to gain insight on the thermo-acoustic instability development mechanisms and limit cycle oscillations. The possibility to use numerical codes for complex industrial cases involving fuel staging, fluid-structure interaction, fuel quality variation and flexible operations has been also addressed. The unsteady U-RANS approach used to describe the high-swirled lean partially premixed flame is presented and the results on the flow characteristics as vortex core generation, vortex shedding, flame pulsation are commented on with respect to monitored parameters during operations of the GT units at Electrabel/GDF-SUEZ sites. The time domain pressure oscillations show limit cycle behavior. By means of Fourier analysis, the coupling frequencies caused by the thermo-acoustic feedback between the acoustic resonances of the chamber and the flame heat release has been detected. The possibility to reduce the computational domain to speed up computations, as done in other works in literature, has been investigated.


Hydrogen ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 33-57
Author(s):  
Jadeed Beita ◽  
Midhat Talibi ◽  
Suresh Sadasivuni ◽  
Ramanarayanan Balachandran

Hydrogen is receiving increasing attention as a versatile energy vector to help accelerate the transition to a decarbonised energy future. Gas turbines will continue to play a critical role in providing grid stability and resilience in future low-carbon power systems; however, it is recognised that this role is contingent upon achieving increased thermal efficiencies and the ability to operate on carbon-neutral fuels such as hydrogen. An important consideration in the development of gas turbine combustors capable of operating with pure hydrogen or hydrogen-enriched natural gas are the significant changes in thermoacoustic instability characteristics associated with burning these fuels. This article provides a review of the effects of burning hydrogen on combustion dynamics with focus on swirl-stabilised lean-premixed combustors. Experimental and numerical evidence suggests hydrogen can have either a stabilising or destabilising impact on the dynamic state of a combustor through its influence particularly on flame structure and flame position. Other operational considerations such as the effect of elevated pressure and piloting on combustion dynamics as well as recent developments in micromix burner technology for 100% hydrogen combustion have also been discussed. The insights provided in this review will aid the development of instability mitigation strategies for high hydrogen combustion.


Author(s):  
R. A. Dalla Betta ◽  
J. C. Schlatter ◽  
S. G. Nickolas ◽  
D. K. Yee ◽  
T. Shoji

A catalytic combustion system has been developed which feeds full fuel and air to the catalyst but avoids exposure of the catalyst to the high temperatures responsible for deactivation and thermal shock fracture of the supporting substrate. The combustion process is initiated by the catalyst and is completed by homogeneous combustion in the post catalyst region where the highest temperatures are obtained. This has been demonstrated in subscale test rigs at pressures up to 14 atmospheres and temperatures above 1300°C (2370°F). At pressures and gas linear velocities typical of gas turbine combustors, the measured emissions from the catalytic combustion system are NOx < 1 ppm, CO < 2 ppm and UHC < 2 ppm, demonstrating the capability to achieve ultra low NOx and at the same time low CO and UHC.


Author(s):  
Stefano Tiribuzi

ENEL operates a dozen combined cycle units whose V94.3A gas turbines are equipped with annular combustors. In such lean premixed gas turbines, particular operation conditions could trigger large pressure oscillations due to thermoacoustic instabilities. The ENEL Research unit is studying this phenomenon in order to find out methods which could avoid or mitigate such events. The use of effective numerical analysis techniques allowed us to investigate the realistic time evolution and behaviour of the acoustic fields associated with this phenomenon. KIEN, an in-house low diffusive URANS code capable of simulating 3D reactive flows, has been used in the Very Rough Grid approach. This approach permits the simulation, with a reasonable computational time, of quite long real transients with a computational domain extended over all the resonant volumes involved in the acoustic phenomenon. The V94.3A gas turbine model was set up with a full combustor 3D grid, going from the compressor outlet up to the turbine inlet, including both the annular plenum and the annular combustion chamber. The grid extends over the entire circular angle, including all the 24 premixed burners. Numerical runs were performed with the normal V94.3A combustor configuration, with input parameters set so as no oscillations develop in the standard ambient conditions. Wide pressure oscillations on the contrary are associated with the circumferential acoustic modes of the combustor, which have their onset and grow when winter ambient conditions are assumed. These results also confirmed that the sustaining mechanism is based on the equivalence ratio fluctuation of premix mixture and that plenum plays an important role in such mechanism. Based on these findings, a system for controlling the thermoacoustic oscillation has been conceived (Patent Pending), which acts on the plenum side of the combustor. This system, called SCAP (Segmentation of Combustor Annular Plenum), is based on the subdivision of the plenum annular volume by means of a few meridionally oriented walls. Repetition of KIEN runs with a SCAP configuration, in which a suitable number of segmentation walls were properly arranged in the annular plenum, demonstrated the effectiveness of this solution in preventing the development of wide thermoacoustic oscillations in the combustor.


2017 ◽  
Vol 9 (4) ◽  
pp. 424-437 ◽  
Author(s):  
Dmytro Iurashev ◽  
Giovanni Campa ◽  
Vyacheslav V Anisimov ◽  
Ezio Cosatto

Currently, gas turbine manufacturers frequently face the problem of strong acoustic combustion-driven oscillations inside combustion chambers. These combustion instabilities can cause extensive wear and sometimes even catastrophic damage of combustion hardware. This requires prevention of combustion instabilities, which, in turn, requires reliable and fast predictive tools. We have developed a two-step method to find a set of operating parameters under which gas turbines can be operated without going into self-excited pressure oscillations. As the first step, an unsteady Reynolds-averaged Navier–Stokes simulation with the flame speed closure model implemented in the OpenFOAM® environment is performed to obtain the flame transfer function of the combustion set-up. As the second step time-domain simulations employing low-order network model implemented in Simulink® are executed. In this work, we apply the proposed method to the Beschaufelter RingSpalt test rig developed at the Technische Universität München. The sensitivity of thermoacoustic stability to the length of a combustion chamber, flame position, gain and phase of flame transfer function and outlet reflection coefficient are studied.


Author(s):  
Ousmane Diallo ◽  
Dimitri Mavris

In this paper, a novel approach is proposed to detect precursory events that lead to catastrophic systems failures. This approach is applied to investigating failures of heavy duty gas turbines. Current industry standards rely on either vibration sensors or gas path performance measurement sensors to identify system anomalies, but this proposed process is based on a combination of information from both type of monitoring sensors. This process is built on a systematical multi-step concept developed by assembling proven mathematical and statistical signal processing techniques to achieve a robust and more precise failure precursor detection methodology. The first step includes performing a multi-resolution analysis of gas turbines gas path performance measurement parameters, condition monitoring and vibration sensors data using wavelet packet transform to extract their signal features. Then, the probabilistic principal component analysis is utilized to fuse data of different types into a set of uncorrelated principal components. Next, a one-dimensional signal representing the multi-variable data is computed. After that a statistical process control technique is applied to set the anomaly threshold. Finally, a Bayesian hypothesis testing method is applied to the monitored signal for abnormality detection. As a proof of concept, the proposed process is successfully applied to a gas turbine compressor failure precursor detection problem.


2005 ◽  
Vol 127 (1) ◽  
pp. 42-48 ◽  
Author(s):  
Kelly Benson ◽  
Jimmy D. Thornton ◽  
Douglas L. Straub ◽  
E. David Huckaby ◽  
Geo. A. Richards

Recent advances in lean premix gas turbine combustion have focused primarily on increasing thermodynamic efficiency, reducing emissions, and minimizing combustion dynamics. The practical limitation on increasing efficiency at lower emissions is the onset of combustion instability, which is known to occur near the lean flammability limit. In a laboratory environment there are many sensors available that provide the combustion engineer with adequate information about flame stability, but those sensors are generally too expensive or unreliable for widespread application in the field. As a consequence, engines must be commissioned in the field with adequate stability margin such that normally expected component wear, fuel quality, and environmental conditions will not cause the turbine to experience unstable combustion. Woodward Industrial Controls, in cooperation with the National Energy Technology Laboratory, is developing a novel combustion sensor that is integrated into the fuel nozzle such that low cost and long life are achieved. The sensor monitors flame ionization, which is indicative of air–fuel ratio and most importantly flame stability.


Author(s):  
Simon Goers ◽  
Benjamin Witzel ◽  
Johannes Heinze ◽  
Guido Stockhausen ◽  
Jaap van Kampen ◽  
...  

The development process for gas turbine combustion systems includes single-burner high-pressure combustion tests as an important validation step. In these tests the performance of a combustor is investigated at realistic gas turbine conditions. Measurement techniques that are typically used in these tests include mass flow meters, thermocouples, pressure transducers, and probes for exhaust-gas composition measurements. These measurement techniques, however, do not provide direct information of the flame behavior. Chemiluminescence measurements have proven to being a valuable and robust technique to close this gap [1,2]. This paper summarizes the results of chemiluminescence measurements performed at Siemens full-scale high-pressure single-burner combustion test rigs at the German Aerospace Center (DLR) in Cologne, Germany. To minimize the impact of the measurement system on the experiment, the optical access to the test rigs was provided by a water-cooled endoscopic probe. The probe was located in a side-wall downstream of the burner, viewing upstream towards the burner outlet. The probe was successfully operated up to full engine pressure and flame temperatures of approximately 1900 K. For the detection of the chemiluminescence signal different approaches were applied: • Spectral analyses of the chemiluminescence signal were done by using an USB spectrometer. • For flame imaging up to two intensified CCD cameras were applied. In front of the cameras various combinations of optical filters were installed to selectively record the respective chemiluminescent species (OH*, CH*, CO2*). • For studies with special focus on combustion dynamics an intensified high-speed CMOS camera was used. High-repetition-rate measurements were used for identifying the shapes of flame modes. • Acoustic pressure oscillations inside the combustion chamber were recorded by pressure transducers simultaneously to the camera images. This allows the pressure oscillations to be correlated with flame fluctuations during post-processing [3,4]. Generally, the robustness of endoscopic chemiluminescence measurements was successfully demonstrated in numerous tests at realistic gas turbine conditions. The applied imaging setups provided new information about the connection between the flame position and NOx emissions as well as the correlation of flame fluctuations and pressure oscillations. Hence, they have become a valuable experimental tool to improve the evaluation and understanding of the combustor performance. Future work will focus on further improvement of quantitative evaluations by compensation of line-of-sight image integration, reabsorption of OH* by OH, and beam steering.


Sign in / Sign up

Export Citation Format

Share Document