The Influence of Shroud and Cavity Geometry on Turbine Performance — An Experimental and Computational Study: Part I — Shroud Geometry

Author(s):  
Budimir Rosic ◽  
John D. Denton ◽  
Eric M. Curtis

Imperfections in the turbine annulus geometry, caused by the presence of the shroud and associated cavity have a significant influence on the aerodynamics of the main passage flow path. In this paper the datum shroud geometry, representative of steam turbine industrial practice, was systematically varied and numerically tested. The study was carried out using a three-dimensional multi-block solver, which modelled the flow in a 1.5 stage turbine. The following geometry parameters were varied: - Inlet and exit cavity length, - Shroud overhang upstream of the rotor leading edge and downstream of the trailing edge, - Shroud thickness for fixed casing geometry and shroud cavity depth, and - Shroud cavity depth for the fixed shroud thickness. The aim of this study was to investigate the influence of the above geometric modifications on mainstream aerodynamics, and to obtain a map of the possible turbine efficiency changes caused by different shroud geometries. The paper then focuses on the influence of different leakage flow fractions on the mainstream aerodynamics. This work highlighted the main mechanisms through which leakage flow affects the mainstream flow and how the two interact for different geometrical variations and leakage flow mass fractions.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Budimir Rosic ◽  
John D. Denton ◽  
Eric M. Curtis

Imperfections in the turbine annulus geometry, caused by the presence of the shroud and associated cavity, have a significant influence on the aerodynamics of the main passage flow path. In this paper, the datum shroud geometry, representative of steam turbine industrial practice, was systematically varied and numerically tested. The study was carried out using a three-dimensional multiblock solver, which modeled the flow in a 1.5 stage turbine. The following geometry parameters were varied: inlet and exit cavity length, shroud overhang upstream of the rotor leading edge and downstream of the trailing edge, shroud thickness for fixed casing geometry and shroud cavity depth, and shroud cavity depth for the fixed shroud thickness. The aim of this study was to investigate the influence of the above geometric modifications on mainstream aerodynamics and to obtain a map of the possible turbine efficiency changes caused by different shroud geometries. The paper then focuses on the influence of different leakage flow fractions on the mainstream aerodynamics. This work highlighted the main mechanisms through which leakage flow affects the mainstream flow and how the two interact for different geometrical variations and leakage flow mass fractions.



Author(s):  
Kevin Reid ◽  
John Denton ◽  
Graham Pullan ◽  
Eric Curtis ◽  
John Longley

An investigation into the effect of stator-rotor hub gap sealing flow on turbine performance is presented. Efficiency measurements and rotor exit area traverse data from a low speed research turbine are reported. Tests carried out over a range of sealing flow conditions show that the turbine efficiency decreases with increasing sealant flow rate but that this penalty is reduced by swirling the sealant flow. Results from time-accurate and steady-state simulations using a three-dimensional multi-block RANS solver are presented with particular emphasis paid to the mechanisms of loss production. The contributions toward entropy generation of the mixing of the sealant fluid with the mainstream flow and of the perturbed rotor secondary flows are assessed. The importance of unsteady stator wake/sealant flow interactions is also highlighted.



Author(s):  
Budimir Rosic ◽  
John D. Denton ◽  
Eric M. Curtis ◽  
Ashley T. Peterson

The geometry of the exit shroud cavity where the rotor shroud leakage flow re-enters the main passage flow is very important due to the dominant influence of the leakage flow on the aerodynamics of low aspect ratio turbines. The work presented in this paper investigates, both experimentally and numerically, possibilities for the control of shroud leakage flow by modifications to the exit shroud cavity. The processes through which the leakage flow affects the mainstream aerodynamics identified in the first part of this study were used to develop promising strategies for reducing the influence of shroud leakage flow. The experimental program of this study was conducted on a three-stage model air turbine, which was extensively supported by CFD analysis. Three different concepts for shroud leakage flow control in the exit cavity were analysed and tested: a) profiled exit cavity downstream end-wall, b) axial deflector, and c) radial deflector concept. Reductions in aerodynamic losses associated with shroud leakage were achieved by controlling the position and direction at which the leakage jet re-enters the mainstream when it leaves the exit shroud cavity. Suggestions are made for an optimum shroud and cavity geometry.



Author(s):  
Wei Li ◽  
Hua Ouyang ◽  
Zhao-hui Du

To give insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has a very small influence on the turbine efficiency in this investigation. The efficiency difference between the maximum and minimum configuration is nearly 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passed through the mid-channel in the 2nd stator.



Author(s):  
Hideaki Tamaki ◽  
Shinya Goto ◽  
Masaru Unno ◽  
Akira Iwakami

The flow behind the variable area nozzle for radial turbines was measured with a 3-hole yaw probe and calculated with CFD. Two nozzle throat-areas were investigated: the smallest and the largest opening for the variable nozzle. Test results agreed with the calculated results qualitatively. The leakage flow through the tip clearance of the nozzle vane significantly affected the flow field downstream of the nozzle vane with the smallest opening. However, the effect on leakage flow on the flow field downstream of the nozzle vane with the largest opening was very weak. In the flow field of the largest opening nozzle, the effect of wake s dominant. The effect of the clearance of the nozzle vane on the turbine performance was estimated by a 1D-model and the strong influence on the turbine efficiency was confirmed at smallest opening. The flow fields in the impeller downstream of the nozzle vane at the smallest opening with and without the nozzle clearance were investigated with CFD. The setting angle of the nozzle vane without clearance was adjusted to match the operating point of the turbine with the nozzle clearance. In order to extract the specific work from the impeller, the nozzle vane with the vane clearance requires the larger vane setting angle than that without clearance. The increase of the vane setting angle increases the incidence loss and deteriorates turbine efficiency.



Author(s):  
M. Pau ◽  
F. Cambuli ◽  
N. Mandas

Three dimensional steady multistage calculations, using mixing plane approach, are presented for two different blade geometries in a two stage axial test turbine with shrouded blades. A 3D multiblock Navier-Stokes finite volume solver (TBLOCK) has been used in all the simulations. In order to study shroud leakage flow effects the whole shroud cavity geometry has been modeled, overcoming most of the limitations of simple shroud leakage model in calculating fluid flow over complex geometries. Numerical investigations are mainly focused on assessing the ability of the solver to be used as multistage design tool for modeling leakage-mainstream flow interaction. Several calculations are compared. The first computes the main blade flow path with no modeling of the shroud cavities. The second includes the modeling of the shroud cavities for a zero leakage mass flow rate. Finally a multiblock calculation which models all the leakage flow paths and shroud cavities has been carried out for two different levels of shroud seal clearance. It is found that neglecting shroud leakage significantly alters the computed velocity profiles and loss distributions, for both the computed blade geometries. A numerically predicted shroud leakage offset loss is presented for the two considered blade geometries, focusing on the relative importance of the leakage flow, re-entry mixing losses, and inlet and exit shroud cavity effect. Results demonstrates that full calculation of leakage flow paths and cavities is required to obtain reliable results, indicating the different effects of the leakage-to-mainstream flow interaction on the blade geometries computed. Despite a slight increase in the computational time, multiblock approach in handling leakage flow problem can now-days be used as a practical tool in the blade design process and routine shroud leakage calculations.



Author(s):  
K. Wolter ◽  
A. Giboni ◽  
P. Peters ◽  
J. R. Menter ◽  
H. Pfost

This paper presents the results of unsteady probe measurements and numerical flow calculations in a 1.5-stage low speed axial turbine with a straight labyrinth seal on a rotor shroud. The unsteady development of the leakage flow in the three cavities is described and analysed in detail. For the investigation of the leakage flow detailed time-accurate measurements of the three-dimensional flow field were carried out in five measurement planes from casing to the rotor shroud over more than one pitch. These measurements were carried out with a miniature pneumatic five-hole probe and miniature triple hot-wire probes. Both probes have a spherical head for better adjustment in flow direction. The high resolution of 330 measurement points in each of the five measurement planes represents the flow field in great detail. The unsteady experimental data was compared with the results of the unsteady numerical simulation of the turbine flow, calculated by the 3D-Navier-Stokes Solver CFX-TASCflow. The calculated data correspond well with the experimental results and allow a detailed analysis of the flow in the cavities of the labyrinth. As demonstrated in this paper the investigations show that the leakage flow at the inlet ant outlet of the labyrinth is strongly influenced by the different positions of the rotor to the stator. The unsteady experimental and numerical data indicates intensive effects of the leakage flow caused and influenced by the trailing edge of the first stator and the potential effect of the rotor leading edge. An intensive vortex develops depending on the rotor position in the first cavity. This vortex is also influenced by a small corner vortex above the axial inlet gap of the labyrinth. After the fins this unsteady influence of the leakage flow decreases and below the jet a large vortex moves in circumferential direction. The intensity of this circulation vortex is reduced at the end of the last cavity due to the interaction with the main flow and the flow direction out of the labyrinth. Therefore the unsteady behaviour of the leakage flow grows up, which is also caused by its uneven entry into the main flow.



Author(s):  
Wei Li ◽  
Hongmei Jiang ◽  
Qiang Zhang ◽  
Sang Woo Lee

The over-tip-leakage (OTL) flow characteristics for a typical squealer tip of a high-pressure turbine blade, which consists of subsonic and transonic flow, have been numerically investigated in the present study, in comparison with the corresponding flat tip results. For the squealer tip employed, flow choking behavior still exists above the tip surface, even though the Mach number is lower and the transonic region is smaller than that for the flat tip. Detailed flow structure analysis shows that most of the fluid entering the squealer cavity is from the frontal leading edge region. The fluid migrates along the cavity and is ejected at various locations near the suction side rim. These fluids form a large subsonic flow zone under the supersonic flow passing over the tip gap which reduces the OTL flow flux. The squealer design works even in the presence of choked OTL flow. Comparisons between results from three different cavity depths with and without relative casing motion suggest that the over-tip-leakage flow flux has much dependence upon the cavity depth for the subsonic region, but is less sensitive to the depth for the transonic tip flow region. Such behavior has been confirmed with and without the existence of relative casing motion.



Author(s):  
Kevin Reid ◽  
John Denton ◽  
Graham Pullan ◽  
Eric Curtis ◽  
John Longley

Individual nozzle guide vanes (NGVs) in modern aero engines are often cast as a single piece with integral hub and casing endwalls. When in operation there is a leakage flow through the chord-wise inter-platform gaps. An investigation into the effect of this leakage flow on turbine performance is presented. Efficiency measurements and NGV exit area traverse data from a low speed research turbine are reported. Tests show that this leakage flow can have a significant impact on turbine performance, but that below a threshold leakage fraction this penalty does not rise with increasing leakage flow rate. The effect of various seal clearances are also investigated. Results from steady-state simulations using a three-dimensional multiblock RANS solver are presented with particular emphasis paid to the physics of the mainstream/leakage interaction and the loss generation.



2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Arun Kumar Pujari ◽  
B. V. S. S. S. Prasad ◽  
N. Sitaram

A computational study on conjugate heat transfer is carried out to present the behavior of nondimensional temperature and heat transfer coefficient of a Nozzle Guide Vane (NGV) leading edge. Reynolds number of both mainstream flow and coolant impinging jets are varied. The NGV has five rows of film cooling holes arranged in shower head manner and four rows of impingement holes arranged in staggered manner. The results are presented by considering materials of different thermal conductivity. The results show that the mainstream flow affects the temperature distribution on the interior side of the vane leading edge for high conductivity material whereas it has negligible effects for low conductivity material. The effect of changing blowing ratio on internal heat transfer coefficient and internal surface temperature is also presented.



Sign in / Sign up

Export Citation Format

Share Document