Endwall Effusion Cooling System Behaviour Within a High-Pressure Turbine Cascade: Part 2—Heat Transfer and Effectiveness Measurements

Author(s):  
B. Facchini ◽  
L. Tarchi ◽  
L. Toni ◽  
S. Zecchi

The cooling performance of a micro-holed endwall of a large-scale high pressure turbine cascade has been investigated within the European Project AITEB-2. The experimental investigation has been performed for a baseline configuration, with a smooth solid endwall and with a micro-holed endwall providing micro-jets ejection from the wall. A micro-holed endwall made of two modules was adopted in order to reduce the compound angle between the main flow and the micro jets axes. The micro-holed endwall is provided with a total amount of 3294 micro-holes with a diameter of 0.1 per cent of the blade chord. Four different cooling flow rates, from 1.2% to 2.6% of the main flow mass flow rate respectively, were investigated and the experimental results are reported in the paper. Both adiabatic effectiveness and heat transfer coefficient have been measured employing a steady state technique with Thermo-chromic Liquid Crystals (TLC). A thin stainless steel heating foil was used to generate the surface heat flux for the HTC measurements and a data reduction procedure based on a Finite Element approach has been developed to take into account the non uniform heat generation along the endwall.


Author(s):  
Knut Lehmann ◽  
Richard Thomas ◽  
Howard Hodson ◽  
Vassilis Stefanis

An experimental study has been conducted to investigate the distribution of the convective heat transfer on the shroud of a high pressure turbine blade in a large scale rotating rig. A continuous thin heater foil technique has been adapted and implemented on the turbine shroud. Thermochromic Liquid Crystals were employed for the surface temperature measurements to derive the experimental heat transfer data. The heat transfer is presented on the shroud top surfaces and the three fins. The experiments were conducted for a variety of Reynolds numbers and flow coefficients. The effects of different inter-shroud gap sizes and reduced fin tip clearance gaps were also investigated. Details of the shroud flow field were obtained using an advanced Ammonia-Diazo surface flow visualisation technique. CFD predictions are compared with the experimental data and used to aid interpretation. Contour maps of the Nusselt number reveal that regions of highest heat transfer are mostly confined to the suction side of the shroud. Peak values exceed the average by as much as 100 percent. It has been found that the interaction between leakage flow through the inter-shroud gaps and the fin tip leakage jets are responsible for this high heat transfer. The inter-shroud gap leakage flow causes a disruption of the boundary layer on the turbine shroud. Furthermore, the development of the large recirculating shroud cavity vortices is severely altered by this leakage flow.



Author(s):  
Mahmoud L. Mansour ◽  
Khosro Molla Hosseini ◽  
Jong S. Liu ◽  
Shraman Goswami

This paper presents a thorough assessment for two of the contemporary CFD programs available for modeling and predicting nonfilm-cooled surface heat transfer distributions on turbine airfoil surfaces. The CFD programs are capable of predicting laminar-turbulent transition and have been evaluated and validated against five test cases with experimental data. The suite of test cases considered for this study consists of two flat plat cases at zero and non-zero pressure gradient and three linear-turbine-cascade test cases that are representative of modern high pressure turbine designs. The flat plate test cases are the ERCOFTAC T3A and T3C2, while the linear turbine cascade cases are the MARKII, the Virginia Polytechnic Institute (VPI), and the Von Karman Institute (VKI) turbine cascades. The numerical tools assessed in this study are 3D viscous Reynolds Averaged-Navier-Stokes (RANS) equations programs that employ a variety of one-equation and two-equation models for turbulence closure. The assessment study focuses on the one-equation Spalart and Allmaras and the two-equation shear stress transport K-ω turbulence models with the ability of modeling and predicting laminar-turbulent transition. The RANS 3D viscous codes are Numeca’s Fine Turbo and ANSYS-CFX’ CFX5. Numerical results for skin friction, surface temperature distribution and heat transfer coefficient from the CFD programs are compared to measured experimental data. Sensitivity of the predictions to free stream turbulence and to inlet turbulence boundary conditions is also presented. The results of the study clearly illustrate the superiority of using the laminar-turbulent transition prediction in improving the accuracy of predicting the heat transfer coefficient on the surfaces of high pressure turbine airfoils.



Author(s):  
Alexander Krichbaum ◽  
Holger Werschnik ◽  
Manuel Wilhelm ◽  
Heinz-Peter Schiffer ◽  
Knut Lehmann

Focusing on the experimental analysis of the effect of variable inlet flows on aerodynamics, efficiency and heat transfer of a modern high pressure turbine, the Large Scale Turbine Rig (LSTR) at Technische Universität Darmstadt has been extensively redesigned. The LSTR is a full annular, rotating low speed turbine test rig carrying a scaled 1.5-stage (NGV1 - Rotor - NGV2) axial high-pressure turbine geometry designed by Rolls-Royce Deutschland to match engine-realistic Reynolds numbers. To simulate real turbine inflow conditions, the LSTR is equipped with a combustor simulator module including exchangeable swirlers. Other inflow conditions include axial or turbulent inflow as well as altered relative positions of swirl cores and NGVs by traversing. To investigate combustor-turbine interaction, the LSTR offers a large variety of optical and physical access ports as well as high flexibility to the application of measurement techniques. An elaborate secondary air system enables the simulation of various cooling air flows. The turbine section is equipped with film-cooled NGVs, a hub side seal air injection between NGVs and rotor, as well as a hub side RIDN cooling air injection module designed to provide realistic turbine flow conditions. Exchangeable hub side RIDN-plates allow for investigation of different coolant injection geometries. Measurement capabilities include 5-hole-probes, Pitot and total temperature rakes, as well as static pressure taps distributed along NGV radial sections and at the hub side passage endwall. The NGV passage flow can be visualized by means of Particle Image Velocimetry (PIV). Hot Wire Anemometry (HWA) will be used for time-resolved measurements of the turbulence level at several positions. The distributions of heat transfer and film cooling effectiveness are acquired using infrared thermography and CO2-gas tracing.



2011 ◽  
Vol 134 (3) ◽  
Author(s):  
R. M. Mathison ◽  
C. W. Haldeman ◽  
M. G. Dunn

Heat-flux measurements are presented for a one-and-one-half stage high-pressure turbine operating at design-corrected conditions with modulated cooling flows in the presence of different inlet temperature profiles. Coolant is supplied from a heavily film-cooled vane and the purge cavity (between the rotor disk and the upstream vane) but not from the rotor blades, which are solid metal. Thin-film heat-flux gauges are located on the uncooled blade pressure and suction surface (at multiple span locations), on the blade tip, on the blade platform, and on the disk and vane sides of the purge cavity. These measurements provide a comprehensive picture of the effect of varying cooling flow rates on surface heat transfer to the turbine blade for uniform and radial inlet temperature profiles. Part I of this paper examines the macroscopic influence of varying all cooling flows together, while Part II investigates the individual regions of influence of the vane outer and purge cooling circuits in more detail. The heat-flux gauges are able to track the cooling flow over the suction surface of the airfoil as it wraps upwards along the base of the airfoil for the uniform vane inlet temperature profile. A similar comparison for the radial profile shows the same coolant behavior but with less pronounced changes. From these comparisons, it is clear that cooling impacts each temperature profile similarly. Nearly all of the cooling influence is limited to the blade suction surface, but small changes are observed for the pressure surface. In addition to the cooling study, a novel method of calculating the adiabatic wall temperature is demonstrated. The derived adiabatic wall temperature distribution shows very similar trends to the Stanton number distribution on the blade.



Author(s):  
R. M. Mathison ◽  
C. W. Haldeman ◽  
M. G. Dunn

Heat-flux measurements are presented for a one-and-one-half stage high-pressure turbine operating at design corrected conditions with modulated cooling flows in the presence of different inlet temperature profiles. Coolant is supplied from a heavily film cooled vane and the purge cavity (between the rotor disk and the upstream vane) but not from the rotor blades, which are solid metal. Thin-film heat-flux gauges are located on the un-cooled blade pressure and suction surface (at multiple span locations), on the blade tip, on the blade platform, and on the disk and vane sides of the purge cavity. These measurements provide a comprehensive picture of the effect of varying cooling flow rates on surface heat transfer to the turbine blade for uniform and radial inlet temperature profiles. Part I of this paper examines the macroscopic influence of varying all cooling flows together, while Part II investigates the individual regions of influence of the vane outer and purge cooling circuits in more detail. The heat-flux gauges are able to track the cooling flow over the suction surface of the airfoil as it wraps upwards along the base of the airfoil for the uniform vane inlet temperature profile. A similar comparison for the radial profile shows the same coolant behavior but with less pronounced changes. From these comparisons, it is clear that cooling impacts each temperature profile similarly. Nearly all of the cooling influence is limited to the blade suction surface, but small changes are observed for the pressure surface. In addition to the cooling study, a novel method of calculating the adiabatic wall temperature is demonstrated. The derived adiabatic wall temperature distribution shows very similar trends to the Stanton Number distribution on the blade.



Author(s):  
Bruno Facchini ◽  
Francesco Maiuolo ◽  
Lorenzo Tarchi ◽  
Nils Ohlendorf

An experimental survey of a leading edge cooling scheme was performed to measure the Nusselt number distribution on a large scale test facility simulating the leading edge cavity of a pressure turbine blade. Test section is composed by two adjacent cavities, a rectangular supply channel and the leading edge cavity. The cooling flow impinges on the concave leading edge internal walls, by means of an impingement array located between the two cavities, and it is extracted through shower-head and film cooling holes. The impingement geometry is composed of a double array of circular holes. The aim of the present study is to point out the effects on the heat transfer coefficient of the radial jet pitch (y/d = 3 to 5) and the tangential jet pitch (x/d = 3 to 5). Moreover the influence of the shower-head extraction on the heat transfer distribution is investigated. Measurements were performed by means of a transient technique using narrow band Thermo-chromic Liquid Crystals (TLC). Jet Reynolds number was varied in order to cover the typical engine conditions of these cooling systems (Rej = 15000–45000). Results are reported in terms of detailed 2D maps, radial and tangential averaged Nusselt numbers.



Author(s):  
Graham C. Smith ◽  
Mary A. Hilditch ◽  
Nigel B. Wood

The life of a high pressure turbine blade is strongly dependent on the operating temperature of the blade material. The gas entering the turbine is at a very high temperature and the blades must be cooled. Accurate predictions of the heat transfer to an uncooled aerofoil are an important step in predicting the blade metal temperature and designing an efficient cooling system. 3D Navier-Stokes calculations of heat transfer are presented for the vanes of two modern high pressure, shroudless turbines. The results are compared with measurements taken in a short duration test facility at engine representative conditions. The experimental dataset includes repeat measurements made using different instrumentation. These data are shown to agree within the confidence limits of the experiment. In this experiment laminar-turbulent transition is known to be a major influence on the measured heat transfer levels. However, careful modelling of this parameter, through physical reasoning and published correlations, gives predictions in reasonable agreement with the measurements.



Author(s):  
Sabine Ardey ◽  
Leonhard Fottner

Systematic isothermal investigations on the aerodynamic effects of leading edge film cooling were carried out on a large scale high pressure turbine cascade named AGTB. In the vicinity of the stagnation point the AGTB turbine cascade has one injection site on the suction side and one on the pressure side. Three injection geometries were tested: Slots (two dimensional geometry), streamwise inclined holes (symmetrical three dimensional geometry) and compound angle holes (fully three dimensional geometry). The injection angle in streamwise direction, the blowing ratio, the inlet turbulence intensity, the inlet Mach number, and the inlet Reynolds number were kept constant at values typically found in modern gas turbines. The measured data comprise the coolant plenum state, the cascade inlet conditions, the flow field in the cascade exit plane including secondary flows, the static pressure distribution in the mid span section of the blade and in the near hole region, the coolant flow field close to the injection site on the leading edge, Schlieren images of the coolant penetration height and oil-and-dye flow visualizations of the blade surface. The experimental data are summarized and documented as a test case that can be used for validation purposes of prediction methods.



Author(s):  
Barbara Fiedler ◽  
Yannick Muller ◽  
Matthias Voigt ◽  
Ronald Mailach

Abstract Efficient cooling of the thermally extremely loaded high-pressure-turbine blades and vanes is required to ensure acceptable service life. The development of cooling systems is a high-dimensional problem, since it includes multiple design parameters. The integration of stochastic methods into the design phase contributes to a better understanding of the complex interaction between the design parameters and the system behavior and thus helps designing more efficient cooling systems. Therefore, the present study compares two stochastic methods, the Elementary-Effect method by Morris and the Coefficient-of-Importance, for the quantification of the sensitivity of the cooling flow to geometric variations using a 1D flow network of a high-pressure-turbine blade. As test case a multipass cooling system with rib-roughened walls is investigated. To achieve geometrically meaningful variations a new parametrization, called Harmonic-Spline-Deformation, is developed and first time presented in the paper at hand. The parametrization proves to be universally applicable to the components of a cooling system and facilitates the interpretation of the physical relationships between variables and resulting system behavior. For a sufficiently large population size, both methods show good agreement in quantifying the importance of design parameters regarding their effect on the cooling flow. The Coefficient-of-Importance, however, proves to be more stable against a decreasing population size and more robust against defects in the population.



Sign in / Sign up

Export Citation Format

Share Document