Investigation of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition and Combustion Performance: Part II—Detailed Diagnostics

Author(s):  
Thomas Mosbach ◽  
Gregor C. Gebel ◽  
Patrick Le Clercq ◽  
Reza Sadr ◽  
Kumaran Kannaiyan ◽  
...  

The ignition and combustion performance of different synthetic paraffinic kerosenes (SPKs) under simulated altitude relight conditions were investigated at the altitude relight test rig at the Rolls-Royce Strategic Research Centre in Derby. The conditions corresponded to a low stratospheric flight altitude between 25,000 and 30,000 feet. The combustor under test was a twin-sector representation of an advanced gas turbine combustor and fuel injector. Five different SPKs and Jet A-1 were tested at different mass flow rates of air and fuel, and at two different sub-atmospheric air pressures and temperatures. The fuel temperature was kept approximately constant. Simultaneous high-speed imaging of the OH* and CH* chemiluminescence, and of the broadband luminosity was used to visualize both the transient flame initiation phenomena and the combustion behavior of the steady burning flames. In addition, flame luminosity spectra were recorded with a spectrometer to obtain spectrally resolved information concerning the different chemiluminescence bands and the soot luminosity. These investigations were performed in conjunction with the comparative evaluation of the ignition and stability regimes of the five SPKs, which is the subject of a separate complementary paper [1]. We found that the observed flame initiation phenomena, the overall combustion behavior and the different ratios of the chemiluminescence from the OH*, CH* and C2* radicals were not strongly dependent on the fuels investigated. But, the SPK flames showed for all combustor operating conditions significantly lower soot luminosities than the corresponding Jet A-1 flames, indicating a potential benefit of the SPK fuels.

Author(s):  
Thomas Mosbach ◽  
Victor Burger ◽  
Barani Gunasekaran

The threshold combustion performance of different fuel formulations under simulated altitude relight conditions were investigated in the altitude relight test facility located at the Rolls-Royce plc. Strategic Research Centre in Derby, UK. The combustor employed was a twin-sector representation of an RQL gas turbine combustor. Eight fuels including conventional crude-derived Jet A-1 kerosene, synthetic paraffinic kerosenes (SPKs), linear paraffinic solvents, aromatic solvents and pure compounds were tested. The combustor was operated at sub-atmospheric air pressure of 41 kPa and air temperature of 265 K. The temperature of all fuels was regulated to 288 K. The combustor operating conditions corresponded to a low stratospheric flight altitude near 9 kilometres. The experimental work at the Rolls-Royce (RR) test-rig consisted of classical relight envelope ignition and extinction tests, and ancillary optical measurements: Simultaneous high-speed imaging of the OH* chemiluminescence and of the soot luminosity was used to visualize both the transient combustion phenomena and the combustion behaviour of the steady burning flames. Flame luminosity spectra were also simultaneously recorded with a spectrometer to obtain information about the different combustion intermediates and about the thermal soot radiation curve. This paper presents first results from the analysis of the weak extinction measurements. Further detailed test fuel results are the subject of a separate complementary paper [1]. It was found in general that the determined weak extinction parameters were not strongly dependent on the fuels investigated, however at the leading edge of the OH* chemiluminescence intensity development in the pre-flame region fuel-related differences were observed.


Author(s):  
Jee Loong Hee ◽  
Kathy Simmons ◽  
David Hann ◽  
Michael Walsh

Abstract Surface waves are observed in many situations including natural and engineering applications. Experiments conducted at the Gas Turbine and Transmissions Research Centre (G2TRC) used high speed imaging to observe multiscale wave structures close to an aeroengine ball bearing in a test rig. The dynamic behavior and scale of the waves indicate that these are shear-driven although highly influenced by gravity at low shaft speed. To understand the interactions between gas and liquid phases including momentum and mass transfers, characterization of the observed waves and ligaments was undertaken. Waves were studied at surfaces close to the ball bearing and ligaments were assessed near the cage. Characterization was in terms of frequency and wavelength as functions of speed, flow-rate, bearing axial load and gravity. The assessments confirmed the existence of gravity-capillary waves and capillary waves. Gravity-capillary waves were measured to have a longer mean wavelength on the co-current side of the bearing (gravity and shear acting together) compared to the counter-current side (gravity and shear opposing). Using a published definition of critical wavelength (λcrit), measured wavelengths at 3,000 rpm were 2.56λcrit on the co-current side compared to 1.86λcrit at the countercurrent location. As shaft speed increases, wavelength reduces with transition to capillary waves occurring at around 0.83λcrit. At shaft speeds beyond 5000 rpm, capillary waves were fully visible and the wavelength was obtained as 0.435λcrit. Flow-rate and load did not significantly influence wavelength. Wave frequency was found to be proportional to shaft speed. The gravity-capillary waves had frequencies within the range 13–25 Hz while capillary waves exhibited a frequency well beyond 100 Hz. The frequencies are highly fluctuating with no effect of load and flow rate observed. Ligaments were characterized using Weber number and Stability number. The number of ligaments increased with shaft speed. A correlation for ligament number based on operating conditions is proposed.


Author(s):  
Christoph Schmalhofer ◽  
Peter Griebel ◽  
Michael Stöhr ◽  
Manfred Aigner ◽  
Torsten Wind

De-carbonization of the power generation sector becomes increasingly important in order to achieve the European climate targets. Coal or biomass gasification together with a pre-combustion carbon capture process might be a solution resulting in hydrogen-rich gas turbine (GT) fuels. However, the high reactivity of these fuels poses challenges to the operability of lean premixed gas turbine combustion systems because of a higher auto-ignition and flashback risk. Investigation of these phenomena at GT relevant operating conditions is needed to gain knowledge and to derive design guidelines for a safe and reliable operation. The present investigation focusses on the influence of the fuel injector configuration on auto-ignition and kernel development at reheat combustor relevant operating conditions. Auto-ignition of H2-rich fuels was investigated in the optically accessible mixing section of a generic reheat combustor. Two different geometrical in-line configurations were investigated. In the premixed configuration, the fuel mixture (H2 / N2) and the carrier medium nitrogen (N2) were homogeneously premixed before injection, whereas in the co-flow configuration the fuel (H2 / N2) jet was embedded in a carrier medium (N2 or air) co-flow. High-speed imaging was used to detect auto-ignition and to record the temporal and spatial development of auto-ignition kernels in the mixing section. A high temperature sensitivity of the auto-ignition limits were observed for all configurations investigated. The lowest auto-ignition limits are measured for the premixed in-line injection. Significantly higher auto-ignition limits were determined in the co-flow in-line configuration. The analysis of auto-ignition kernels clearly showed the inhibiting influence of fuel dilution for all configurations.


Author(s):  
Thomas Mosbach ◽  
Victor Burger ◽  
Barani Gunasekaran

The influence of different jet fuel compositions on aviation gas turbine combustion performance was investigated. Eight fuels including conventional crude-derived Jet A-1 kerosene, fully synthetic Jet fuel, synthetic paraffinic kerosenes, linear paraffinic solvents, aromatic solvents and pure compounds were tested. The tests were performed in the altitude relight test facility located at the Rolls-Royce Strategic Research Centre in Derby (UK). The combustor employed was a twin-sector representation of an RQL gas turbine combustor. The combustor was operated at sub-atmospheric air pressure of 41 kPa and air temperature of 265 K. The temperature of the fuels was regulated to 288 K. The combustor operating conditions corresponded to a simulated low stratospheric flight altitude near 9,000 metres. The experimental work at the Rolls-Royce (RR) test-rig consisted of classical relight envelope ignition and extinction tests, and ancillary optical measurements: Simultaneous high-speed imaging of the OH* chemiluminescence and of the soot luminescence was applied to obtain spatial and temporal resolved insight into the ongoing processes. Optical emission spectroscopy was also applied simultaneously to obtain spectral and temporal resolved insight into the flame luminescence. First results from the analysis of the OH* chemiluminescence and detailed fuel analysis results were presented in previous papers [1, 2]. This article presents further results from the analysis of the soot luminescence imaging and flame spectra. It was found in general that the combustion performance of all test fuel formulations was comparable to regular Jet A-1 kerosene. Fuel related deviations, if existent, are found to be small.


2020 ◽  
pp. 152808372094927 ◽  
Author(s):  
Ignacio Formoso ◽  
Alejandro Rivas ◽  
Gerardo Beltrame ◽  
Gorka S Larraona ◽  
Juan Carlos Ramos ◽  
...  

The high demand for quality in the manufacture of absorbent hygiene products requires the adhesive bonds between layers to be as uniform as possible. An experimental study was conducted on two industrial multihole melt blowing nozzle designs used for hot-melt adhesive applications for hygiene products, in order to study two defects that influence the quality of the adhesive bond: fibre breakup, resulting in contamination, and the presence of shots, undesirable lumps that end up in the finished product. To this end, the fibre dynamics were captured at the nozzle exit region by using high-speed imaging. From the results it was observed that die drool is the main source of shot formation, while fibre breakup occurs as a result of applying a sufficiently large force in the direction perpendicular to the fibre. In addition, three dimensionless parameters were defined, the first two being the air-polymer flux ratio and the dimensionless temperature ratio, both of which represent the operating conditions, and the remaining one being the force ratio, which represents the nozzle geometry. The effect of these parameters on fibre breakup and shot formation was studied and the results indicate that both the operating conditions and the nozzle geometry were responsible for the onset of the fibre breakup and for the formation of shots. More precisely, both defects turned out to be dominated by the air-polymer flux ratio and the air tilt angle. The results that emerge from this study are useful for the enhancement of industrial melt blowing nozzles.


Author(s):  
Marcus Grochowina ◽  
Daniel Hertel ◽  
Simon Tartsch ◽  
Thomas Sattelmayer

Dual-fuel (DF) engines offer great fuel flexibility combined with low emissions in gas mode. The main source of energy in this mode is provided by gaseous fuel, while the diesel fuel acts only as an ignition source. For this reason, the reliable autoignition of the pilot fuel is of utmost importance for combustion in DF engines. However, the autoignition of the pilot fuel suffers from low compression temperatures caused by Miller valve timings. These valve timings are applied to increase efficiency and reduce nitrogen oxide (NOx) emissions. Previous studies have investigated the influence of injection parameters and operating conditions on ignition and combustion in DF engines using a unique periodically chargeable combustion cell. Direct light high-speed images and pressure traces clearly revealed the effects of injection parameters and operating conditions on ignition and combustion. However, these measurement techniques are only capable of observing processes after ignition. In order to overcome this drawback, a high-speed shadowgraph technique was applied in this study to examine the processes prior to ignition. Measurements were conducted to investigate the influence of compression temperature and injection pressure on spray formation and ignition. Results showed that the autoignition of diesel pilot fuel strongly depends on the fuel concentration within the spray. The high-speed shadowgraph images revealed that in the case of very low fuel concentration within the pilot spray, only the first stage of the two-stage ignition occurs. This leads to large cycle-to-cycle variations and misfiring. However, it was found that a reduced number of injection holes counteract these effects. The comparison of a diesel injector with ten-holes and a modified injector with five-holes showed shorter ignition delays, more stable ignition and a higher number of ignited sprays on a percentage basis for the five-hole nozzle.


2019 ◽  
Vol 21 (2) ◽  
pp. 406-417 ◽  
Author(s):  
Noud Maes ◽  
Mark Hooglugt ◽  
Nico Dam ◽  
Bart Somers ◽  
Gilles Hardy

To isolate the effect of flame–wall interaction from representative operating conditions of an internal combustion engine, experiments were performed in a constant-volume pre-burn vessel. Three different wall geometries were studied at distances of 32.8, 38.2, and 46.2 mm from a single-hole 0.09-mm orifice diameter fuel injector. A flat wall provides a simplified case of flame–wall interaction. To mimic the division of a jet into two regions by the piston bowl rim in an engine, a two-dimensional confined wall is used. A third, axisymmetric confined wall geometry allows a second simplified comparison to numerical simulations in a Reynolds-averaged Navier–Stokes framework. As a limiting situation for a free jet, the distance from the injector orifice to the end wall of the chamber is 95 mm. Thermocouples installed in the end wall provided insights into local heat losses for reference cases without a wall insert. The test conditions were according to the Engine Combustion Network Spray A guidelines with an ambient temperature of 900 K and an ambient density of 22.8 kg/m3 with 15% O2. Flame structures were studied using high-speed OH* chemiluminescence with integrated single-shot OH PLIF and combined with pressure-based apparent heat release data to infer combustion progress and spray behavior. Soot was studied in a qualitative manner using high-speed natural luminosity imaging with integrated high-speed laser-induced incandescence. Overall, increased mixing upon interaction with the surfaces is observed to increase early heat release rate and to significantly reduce soot, with the nearest wall distance showing most effect. The flat wall gives rise to the most significant effects in all cases.


Author(s):  
Khanh Cung ◽  
Toby Rockstroh ◽  
Stephen Ciatti ◽  
William Cannella ◽  
S. Scott Goldsborough

Unlike homogeneous charge compression ignition (HCCI) that has the complexity in controlling the start of combustion event, partially premixed combustion (PPC) provides the flexibility of defining the ignition timing and combustion phasing with respect to the time of injection. In PPC, the stratification of the charge can be influenced by a variety of methods such as number of injections (single or multiple injections), injection pressure, injection timing (early to near TDC injection), intake boost pressure, or combination of several factors. The current study investigates the effect of these factors when testing two gasoline-like fuels of different reactivity (defined by Research Octane Number or RON) in a 1.9-L inline 4-cylinder diesel engine. From the collection of engine data, a full factorial analysis was created in order to identify the factors that most influence the outcomes such as the location of ignition, combustion phasing, combustion stability, and emissions. Furthermore, the interaction effect of combinations of two factors or more was discussed with the implication of fuel reactivity under current operating conditions. The analysis was done at both low (1000 RPM) and high speed (2000 RPM). It was found that the boost pressure and air/fuel ratio have strong impact on ignition and combustion phasing. Finally, injection-timing sweeps were conducted whereby the ignition (CA10) of the two fuels with significantly different reactivity were matched by controlling the boost pressure while maintaining a constant lambda (air/fuel equivalence ratio).


Author(s):  
Julia Fleck ◽  
Peter Griebel ◽  
Manfred Aigner ◽  
Adam M. Steinberg

Previous autoignition studies at conditions relevant to reheat combustor operation have indicated that the presence of relatively small amounts of natural gas (NG) in H2/N2 fuel significantly changes the autoignition behavior. The present study further elucidates the influence of NG on autoignition, kernel propagation, and subsequent flame stabilization at conditions that are relevant for the practical operation of gas turbine reheat combustors (p = 15 bar, Tinlet > 1000 K, hot flue gas, appropriate residence times). The experimental investigation was carried out in a generic, optically accessible reheat combustor. Autoignition events in the mixing zone were recorded by a high-speed camera at frame rates of up to 30,000 fps. This paper describes the autoignition behavior as the H2 volume fraction is increased (decreasing NG) in a H2/NG/N2 fuel mixture for two different jet penetration depths. Additionally, the subsequent flame stabilization phenomena and the structure of the stabilized flame are discussed. The results reveal that autoignition kernels occurred even for the lowest H2 fuel fraction, but they did not initiate a stable flame in the mixing zone. Increasing the H2 volume fraction decreased the distance between the initial position of the autoignition kernels and the fuel injector, finally leading to flame stabilization. The occurrence of autoignition kernels at lower H2 volume fractions (H2/(H2+NG) < 85%) was not found to be significantly influenced by the fluid dynamic and mixing field differences related to the different jet penetration depths. In contrast, autoignition leading to flame stabilization was found to depend on jet penetration; flame stabilization occurred at lower H2 fractions for the higher jet penetration depth (H2/(H2+NG) ≈ 89 compared to H2/(H2+NG) ≈ 95 vol. %).


Sign in / Sign up

Export Citation Format

Share Document