Innovative Variable Turbine Concept for Turbochargers
New concepts for the optimisation of supercharging systems have been analysed to improve fuel consumption, emissions and transient diesel engine response. In addition to the conventional VTG (Variable Turbine Geometry) where the variability takes place upstream of the turbine impeller, a new innovative variable turbine geometry called VOT (Variable Outlet Turbine) is investigated in this paper where the variability takes place at impeller exit. The flow variability is achieved by variation of the flow cross-section at the turbine outlet using an axial displacement of a sliding sleeve over the exducer and provides a simple solution for flow variability. The flow field of the VOT is calculated by means of steady state 3D-CFD simulations to predict the aerodynamic performance as well as to analyse the loss mechanisms. The VOT design is optimised by finding a good balance between clearance and outlet losses to improve the turbine efficiency. Furthermore, experimental results of the VOT are presented and compared to a turbine equipped with a waste gate (WG) that verify the efficiency advantage of the VOT. In general, it is found that the use of the VOT at high specific speed is important to reduce the outlet losses and to improve the turbine efficiency over a wide operating range.