Thrust Reverser for a Separate Exhaust High Bypass Ratio Turbofan Engine and its Effect on Aircraft and Engine Performance

Author(s):  
Tashfeen Mahmood ◽  
Anthony Jackson ◽  
Vishal Sethi ◽  
Pericles Pilidis

This paper discusses thrust reversing techniques for a separate exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance. Cranfield University is developing suitable thrust reverser performance models. These thrust reverser performance models will subsequently be integrated within the TERA (Techno-economic Environmental Risk Analysis) architecture thereby allowing for more detailed and accurate representations of aircraft and engine performance during the landing phase of a typical civil aircraft mission. The turbofan engine chosen for this study was CUTS_TF (Cranfield University Twin Spool Turbofan) which is similar to the CFM56-5B4 engine and the information available in the public domain is used for the engine performance analysis along with the Gas Turbine Performance Software, ‘GasTurb 10’ [1]. The CUTEA (Cranfield University Twin Engine Aircraft) which is similar to the Airbus A320 is used alongside with the engine model for the thrust reverser performance calculations. The aim of this research paper is to investigate the effects on aircraft and engine performance characteristics due to the pivoting door type thrust reverser deployment. The paper will look into the overall engine performance characteristics and how the engine components get affected when the thrust reversers come into operation. This includes the changes into the operating point of fan, booster, HP compressor, HP turbine, LP turbine, bypass nozzle and core nozzle. Also, thrust reverser performance analyses were performed (at aircraft/engine system level) by varying the reverser exit area by ± 5% and its effect on aircraft deceleration rate, deceleration time and landing distances were observed.

Author(s):  
Tashfeen Mahmood ◽  
Anthony Jackson ◽  
Syed H. Rizvi ◽  
Pericles Pilidis ◽  
Mark Savill ◽  
...  

This paper discusses thrust reverser techniques for a mixed exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance. The turbofan engine chosen for this study was CUTS_TF (Cranfield University Three Spool Turbofan) which is similar to Rolls-Royce TRENT 772 engine and the information available for this engine in the public domain is used for the engine performance analysis along with the Gas Turbine Performance Software, GasTurb 10. The CUTEA (Cranfield University Twin Engine Aircraft) which is similar to the Airbus A330 is used along side with the engine model for the thrust reverser performance calculations. The aim of this research paper is to investigate the effects on mixed exhaust engine performance due to the pivoting door type thrust reverser deployment. The paper looks into the engine off-design performance characteristics and how the engine components get affected when the thrust reverser come into operation. This includes the changes into the operating point of fan, IP compressor, HP compressor, HP turbine, IP turbine, LP turbine and the engine exhaust nozzle. Also, the reverser deployment effect on aircraft, deceleration time and landing distances are discussed.


Author(s):  
M. S. Zawislak ◽  
D. J. Cerantola ◽  
A. M. Birk

A high bypass ratio turbofan engine capable of powering the Boeing 757 was considered for thrust and drag analysis. A quasi-2D engine model applying the fundamental thermodynamics conservation equations and practical constraints determined engine performance and provided cross-sectional areas in the low-pressure system. Coupled with suggestions on boat-tail angle and curvature from literature, a representative bypass duct and primary exhaust nozzle was created. 3D steady-RANS simulations using Fluent® 18 were performed on a 1/8th axisymmetric section of the geometry. A modified 3D fan zone model forcing radial equilibrium was used to model the fan and bypass stator. Takeoff speed and cruise operating conditions were modeled and simulated to identify changes in thrust composition and intake sensitivity. Comparison between net thrust predictions by the engine model and measured in CFD were within grid uncertainty and model sensitivity at cruise. Trends observed in a published database were satisfied and calculations coincided with GasTurb™ 8.0. Verification of thrust in this manner gave confidence to the aerodynamic performance prediction of this modest CFD. Obtaining a baseline bypass design would allow rapid testing of aftermarket components and integration techniques in a realistic flow-field without reliance on proprietary engine data.


2005 ◽  
Vol 109 (1093) ◽  
pp. 139-146
Author(s):  
T. R. Nada ◽  
A. A. Hashem

AbstractAn algorithm employing adaptive neuro-fuzzy online identification and sequential quadratic programming optimisation techniques is developed to enhance aircraft engine performance. This algorithm is implemented and tested using digital simulation for two spool, mixed exhaust, variable geometry turbofan engine. Parametric study is conducted to select the proper measurable parameter that can represent the actual thrust during online optimisation. Subtractive clustering technique is applied to generate the minimum number of fuzzy rules that can model the engine performance at various input parameters and flight conditions. The resulting neuro-fuzzy system is then optimised through training algorithm to accurately represent the engine. This system can address engine variations by relearning the network using online measurements from the actual engine. Generating the optimum schedules and comparing them with those obtained from the complete non-linear engine model verify the algorithm. Benefits from this algorithm include fuel consumption savings, reductions in turbine inlet temperature, and preventing limit exceeding.


Author(s):  
Julien Pilet ◽  
Jean-Loi¨c Lecordix ◽  
Nicolas Garcia-Rosa ◽  
Roger Bare`nes ◽  
Ge´rard Lavergne

This paper presents a fully-coupled zooming approach for the performance simulation of modern very high bypass ratio turbofan engines developed by Snecma. This simulation is achieved by merging detailed 3D simulations and map component models into a unified representation of the whole engine. Today’s state-of-the-art engine cycle analysis are commonly based on component mapping models which enable component interactions to be considered, while CFD simulations are carried out separately and therefore overlook those interactions. With the methodology discussed in this paper, the detailed analysis of an engine component is no longer considered apart, but directly within the whole engine performance model. Moreover, all links between the 3D simulation and overall engine models have been automated making this zooming simulation fully-integrated. The simulation uses the PROOSIS propulsion object-oriented simulation software developed by Empresarios Agrupados for whole engine cycle analysis and the computational fluid dynamics (CFD) code CEDRE developed by ONERA for the high fidelity 3-D component simulations. The whole engine model is created by linking component models through their communication ports in a graphical user-friendly interface. CFD simulated component models have been implemented in PROOSIS libraries already providing mapped components. Simple averaging techniques have been developed to handle 3D-to-0D data exchange. Boundary conditions of the whole engine model remain the same as for the typical 0-D engine cycle analysis while those of the 3-D simulations are automatically given by PROOSIS to CEDRE. This methodology has been applied on an advanced very high bypass ratio engine developed by Price Induction. The proposed zooming approach has been performed on the fan stage when simulating Main Design Point as well as severe case of off-design conditions such as wind-milling. The results have been achieved within the same time frame of a typical CFD fully-converged calculation. A detailed comparison with upcoming test results will provide a first validation of the methodology and will be presented in a future paper.


1978 ◽  
Author(s):  
M. Kohzu ◽  
H. Chinone ◽  
M. Miyake ◽  
K. Murashima ◽  
K. Yamanaka ◽  
...  

A research program of low bypass ratio small front fan engines has been in process at Third Research Center of Technical Research and Development Institute of Japan Defence Agency since 1975. The final target of this program is the development of the propulsion engine for the high subsonic small aircraft. As the first phase of this program, the bench test engine XF3-1 was manufactured and the basic studies of the overall engine matching performance and the effect of each component on the engine performance have been carried out. This paper describes the XF3-1 engine, reviews the status of the research and presents the major engineering progress attained through the research.


Author(s):  
A. Alexiou ◽  
K. Mathioudakis

This paper describes the modelling of typical secondary air system elements such as rotating orifices, seals and flow passages with heat and work transfer from the surrounding surfaces. The modelling is carried out in an object-oriented simulation environment that allows the creation of different configurations in a simple and flexible manner. This makes possible to compare the performance between different designs of individual components or complete secondary air systems as well as integrate them directly in whole engine performance models. The modelling is validated against published experimental data and computational results. An example of implementation in an engine model is also presented.


Author(s):  
Marvin F. Schmidt ◽  
Christopher M. Norden ◽  
Jeffrey M. Stricker

The gas turbine is applied in four basic configurations; the turbojet, the turbofan, the turboprop and the turboshaft. Comparisons of the performance of these various configurations is difficult since they convert the energy to different forms, i.e. thrust or shaft power. Cycle variables which do not necessarily constitute advancements in the state-of-the-art such as bypass ratio and fan pressure ratio can have a profound effect on thrust and shaft power. Differences in flight speed and altitude capability further confound the comparisons. What is required is a comparison methodology that removes all of these variables and yet puts all the various types of engines on an equitable basis. This paper will provide such a comparison tool. All turbomachinery, regardless of configuration, can be compared with this method.


2021 ◽  
Author(s):  
Julian Salomon ◽  
Jan Göing ◽  
Sebastian Lück ◽  
Matteo Broggi ◽  
Jens Friedrichs ◽  
...  

Abstract In this work the impact of combined module variances on the overall performance of a high-bypass aircraft engine is investigated. Therefore, a comprehensive sensitivity analysis on the example of a turbofan engine performance model is provided by means of Kucherenko indices. Direct influences of selected model inputs on key model outputs as well as influences due to interaction effects between these input variables are identified. The selected input variables of the performance model are partly subject to considerable dependencies that are taken into account by the Kucherenko indices. The results confirm known direct influences of deterioration effects on the key performance parameters of the aircraft engine on the one hand, and provide profound insights into complex interaction effects between the components and their impact on the V2500-A1 aircraft engine performance on the other.


Author(s):  
Tobias Wensky ◽  
Lutz Winkler ◽  
Jens Friedrichs

Environmental influences have an increasing effect on the performance degradation and durability of modern aircraft engines. The study provides information on environmental effects using in-flight engine data and results of engine overhauls performed at MTU Maintenance. According to these investigations global regions are classified into erosive and anthropogenic polluted areas. Both types of regional effects significantly degrade performance and engine durability. The investigation, which is based upon the in-flight data taken from Engine Trend Monitoring (ETM), provides one approach for the estimatation of environmental effects on aircraft engine performance degradation. The results of the monitored engines provide detailed information on the environmental effects atlocal airports. The Exhaust Gas Temperature (EGT) that has been measured under flight conditions is compared with a calculated EGT of a calibrated fully thermodynamic gas path engine model (MOPS). Therefore, the EGT also serves as an indicator for performance degradation, increase of specific fuel consumption and the need for on-wing maintenance actions. Further information provided by the engine shop visit data at MTU Maintenance allows for an estimation of environmental influences on durability and overhaul costs. The on-wing time of maintained shop visit data is compared with a model for on-wing time calculation, whereas variations in durability were observed and analyzed under the aspects of environmental influences. Depending on the variations, corrections were made by defining the factors contributing to the classifications of environmental effects. These corrective factors provide information on reduced durability and increased operating costs. The result of the ETM performance degradation analysis shows significant variations in engine performance degradation as a result of specific regional operation. The analyses of maintenance data as well as performance degradation measured by ETM show remarkable environmental effects on engine durability and an increase in maintenance costs.


Author(s):  
Stanislaus Reitenbach ◽  
Alexander Krumme ◽  
Thomas Behrendt ◽  
Markus Schnös ◽  
Thomas Schmidt ◽  
...  

The purpose of this paper is to present a multidisciplinary predesign process and its application to three aero-engine models. First, a twin spool mixed flow turbofan engine model is created for validation purposes. The second and third engine models investigated comprise future engine concepts: a counter rotating open rotor (CROR) and an ultrahigh bypass turbofan. The turbofan used for validation is based on publicly available reference data from manufacturing and emission certification. At first, the identified interfaces and constraints of the entire predesign process are presented. An important factor of complexity in this highly iterative procedure is the intricate data flow, as well as the extensive amount of data transferred between all involved disciplines and among different fidelity levels applied within the design phases. To cope with the inherent complexity, data modeling techniques have been applied to explicitly determine required data structures of those complex systems. The resulting data model characterizing the components of a gas turbine and their relationships in the design process is presented in detail. Based on the data model, the entire engine predesign process is presented. Starting with the definition of a flight mission scenario and resulting top level engine requirements, thermodynamic engine performance models are developed. By means of these thermodynamic models, a detailed engine component predesign is conducted. The aerodynamic and structural design of the engine components are executed using a stepwise increase in level of detail and are continuously evaluated in context of the overall engine system.


Sign in / Sign up

Export Citation Format

Share Document