Contra-Rotating Propeller Modelling for Open Rotor Engine Performance Simulations

Author(s):  
Alexios Alexiou ◽  
Charalambos Frantzis ◽  
Nikolaos Aretakis ◽  
Vassilios Riziotis ◽  
Ioannis Roumeliotis ◽  
...  

This paper presents a method for modelling contra-rotating propellers (CRP) for engine performance simulations. An in-house free-wake lifting surface tool (GENUVP) is used to generate suitable performance maps for each propeller that express power and thrust coefficient in terms of advance ratio, flight Mach number, speed ratio and blade pitch angle of each propeller. Appropriate component models that utilize these maps are then developed in a commercial engine performance simulation environment (PROOSIS). Next, the propeller components are integrated in a direct-drive open rotor engine model. Finally, design point and off-design simulations are carried out that demonstrate the use of the model through studies of different propeller blade angle control strategies.

Author(s):  
Julien Pilet ◽  
Jean-Loi¨c Lecordix ◽  
Nicolas Garcia-Rosa ◽  
Roger Bare`nes ◽  
Ge´rard Lavergne

This paper presents a fully-coupled zooming approach for the performance simulation of modern very high bypass ratio turbofan engines developed by Snecma. This simulation is achieved by merging detailed 3D simulations and map component models into a unified representation of the whole engine. Today’s state-of-the-art engine cycle analysis are commonly based on component mapping models which enable component interactions to be considered, while CFD simulations are carried out separately and therefore overlook those interactions. With the methodology discussed in this paper, the detailed analysis of an engine component is no longer considered apart, but directly within the whole engine performance model. Moreover, all links between the 3D simulation and overall engine models have been automated making this zooming simulation fully-integrated. The simulation uses the PROOSIS propulsion object-oriented simulation software developed by Empresarios Agrupados for whole engine cycle analysis and the computational fluid dynamics (CFD) code CEDRE developed by ONERA for the high fidelity 3-D component simulations. The whole engine model is created by linking component models through their communication ports in a graphical user-friendly interface. CFD simulated component models have been implemented in PROOSIS libraries already providing mapped components. Simple averaging techniques have been developed to handle 3D-to-0D data exchange. Boundary conditions of the whole engine model remain the same as for the typical 0-D engine cycle analysis while those of the 3-D simulations are automatically given by PROOSIS to CEDRE. This methodology has been applied on an advanced very high bypass ratio engine developed by Price Induction. The proposed zooming approach has been performed on the fan stage when simulating Main Design Point as well as severe case of off-design conditions such as wind-milling. The results have been achieved within the same time frame of a typical CFD fully-converged calculation. A detailed comparison with upcoming test results will provide a first validation of the methodology and will be presented in a future paper.


Author(s):  
I. Roumeliotis ◽  
A. Alexiou ◽  
N. Aretakis ◽  
G. Sieros ◽  
K. Mathioudakis

Rain ingestion can significantly affect the performance and operability of gas turbine aero-engines. In order to study and understand rain ingestion phenomena at engine level, a performance model is required that integrates component models capable of simulating the physics of rain ingestion. The current work provides, for the first time in the open literature, information about the setup of a mixed-fidelity engine model suitable for rain ingestion simulation and corresponding overall engine performance results. Such a model can initially support an analysis of rain ingestion during the predesign phase of engine development. Once components and engine models are validated and calibrated versus experimental data, they can then be used to support certification tests, the extrapolation of ground test results to altitude conditions, the evaluation of control or engine hardware improvements and eventually the investigation of in-flight events. In the present paper, component models of various levels of fidelity are first described. These models account for the scoop effect at engine inlet, the fan effect and the effects of water presence in the operation and performance of the compressors and the combustor. Phenomena such as velocity slip between the liquid and gaseous phases, droplet breakup, droplet–surface interaction, droplet and film evaporation as well as compressor stages rematching due to evaporation are included in the calculations. Water ingestion influences the operation of the components and their matching, so in order to simulate rain ingestion at engine level, a suitable multifidelity engine model has been developed in the Proosis simulation platform. The engine model's architecture is discussed, and a generic high bypass turbofan is selected as a demonstration test case engine. The analysis of rain ingestion effects on engine performance and operability is performed for the worst case scenario, with respect to the water quantity entering the engine. The results indicate that rain ingestion has a strong negative effect on high-pressure compressor surge margin, fuel consumption, and combustor efficiency, while more than half of the water entering the core is expected to remain unevaporated and reach the combustor in the form of film.


Author(s):  
Stanislaus Reitenbach ◽  
Alexander Krumme ◽  
Thomas Behrendt ◽  
Markus Schnös ◽  
Thomas Schmidt ◽  
...  

The purpose of this paper is to present a multidisciplinary predesign process and its application to three aero-engine models. First, a twin spool mixed flow turbofan engine model is created for validation purposes. The second and third engine models investigated comprise future engine concepts: a counter rotating open rotor (CROR) and an ultrahigh bypass turbofan. The turbofan used for validation is based on publicly available reference data from manufacturing and emission certification. At first, the identified interfaces and constraints of the entire predesign process are presented. An important factor of complexity in this highly iterative procedure is the intricate data flow, as well as the extensive amount of data transferred between all involved disciplines and among different fidelity levels applied within the design phases. To cope with the inherent complexity, data modeling techniques have been applied to explicitly determine required data structures of those complex systems. The resulting data model characterizing the components of a gas turbine and their relationships in the design process is presented in detail. Based on the data model, the entire engine predesign process is presented. Starting with the definition of a flight mission scenario and resulting top level engine requirements, thermodynamic engine performance models are developed. By means of these thermodynamic models, a detailed engine component predesign is conducted. The aerodynamic and structural design of the engine components are executed using a stepwise increase in level of detail and are continuously evaluated in context of the overall engine system.


Author(s):  
Pablo Bellocq ◽  
Vishal Sethi ◽  
Luca Cerasi ◽  
Sebastian Ahlefelder ◽  
Riti Singh ◽  
...  

As a consequence of increased stringent engine emission regulations, in a highly competitive market, it has become necessary to explore innovative, economic and environmentally friendly cycles to sustain competitive advantages. Among these innovative cycles, both the geared and the direct drive counter-rotating open rotors, due to their relatively higher propulsive efficiency, have the potential to significantly reduce fuel consumption and emissions relative to conventional high bypass ratio turbofans. A detailed TERA (Technoeconomic Environmental Risk Analysis), multidisciplinary optimisation framework, can be used to optimise both engines and thereby assess their potential as well as quantify their risks on a formal and consistent basis. This technique is based on detailed and rigorous engine performance, aircraft performance, engine geometry, engine weight, noise, gaseous emissions and environmental impact simulation models. No specific performance simulation methodology for counter rotating open rotors is available in the public domain. An innovative technique is introduced, comprising novel models of: • Counter-rotating propellers (including their interaction); • Counter-rotating turbines; • Planetary differential gearboxes. A thorough description of the modelling methodology (with a justification of the main assumptions) of each of these three components is presented and an indication of work in progress is provided. These components are then used to develop direct drive and geared open rotor performance models. The results of steady state design point and off design performance simulations of these two engine models are subsequently presented via two case studies. Some of the differences in the performance of the low pressure system of geared and direct drive open rotors are highlighted. It was observed that the impact of the key OR performance DP parameters is different for the two engines. Consequently the optimal design and control strategies of theses two configurations will differ. The flexibility of the new simulation technique makes it a suitable candidate to perform multi-disciplinary TERA design space exploration and optimisation studies assess and optimise open rotor designs and control strategies in a multidisciplinary framework.


Author(s):  
I. Roumeliotis ◽  
A. Alexiou ◽  
N. Aretakis ◽  
G. Sieros ◽  
K. Mathioudakis

Rain ingestion can significantly affect the performance and operability of gas turbine aero-engines. In order to study and understand rain ingestion phenomena at engine level, a performance model is required that integrates component models capable of simulating the physics of rain ingestion. The current work provides, for the first time in the open literature, information about the set-up of a mixed-fidelity engine model suitable for rain ingestion simulation and corresponding overall engine performance results. Such a model can initially support an analysis of rain ingestion during the pre-design phase of engine development. Once components and engine models are validated and calibrated versus experimental data, they can then be used to support certification tests, the extrapolation of ground test results to altitude conditions, the evaluation of control or engine hardware improvements and eventually the investigation of in-flight events. In the present paper, component models of various levels of fidelity are firstly described. These models account for the scoop effect at engine inlet, the fan effect and the effects of water presence in the operation and performance of the compressors and the combustor. Phenomena such as velocity slip between the liquid and gaseous phases, droplet break-up, droplet-surface interaction, droplet and film evaporation as well as compressor stages re-matching due to evaporation are included in the calculations. Water ingestion influences the operation of the components and their matching, so in order to simulate rain ingestion at engine level a suitable multi-fidelity engine model has been developed in the PROOSIS simulation platform. The engine model’s architecture is discussed and a generic high bypass turbofan is selected as a demonstration test case engine. The analysis of rain ingestion effects on engine performance and operability is performed for the worst case scenario, with respect to the water quantity entering the engine. The results indicate that rain ingestion has a strong negative effect on high-pressure compressor surge margin, fuel consumption and combustor efficiency, while more than half of the water entering the core is expected to remain unevaporated and reach the combustor in the form of film.


Author(s):  
Ioannis Kolias ◽  
Alexios Alexiou ◽  
Nikolaos Aretakis ◽  
Konstantinos Mathioudakis

A mean-line compressor performance calculation method is presented that covers the entire operating range, including the choked region of the map. It can be directly integrated into overall engine performance models, as it is developed in the same simulation environment. The code materializing the model can inherit the same interfaces, fluid models, and solvers, as the engine cycle model, allowing consistent, transparent, and robust simulations. In order to deal with convergence problems when the compressor operates close to or within the choked operation region, an approach to model choking conditions at blade row and overall compressor level is proposed. The choked portion of the compressor characteristics map is thus numerically established, allowing full knowledge and handling of inter-stage flow conditions. Such choking modelling capabilities are illustrated, for the first time in the open literature, for the case of multi-stage compressors. Integration capabilities of the 1D code within an overall engine model are demonstrated through steady state and transient simulations of a contemporary turbofan layout. Advantages offered by this approach are discussed, while comparison of using alternative approaches for representing compressor performance in overall engine models is discussed.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1322
Author(s):  
Simeon Iliev

Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different types of alcohol-blended fuels on performance and emissions. For the purpose of this study, the AVL Boost software was used to analyse characteristics of the gasoline engine when operating with different mixtures of ethanol, methanol, butanol, and gasoline (by volume). Results obtained from different fuel blends showed that when alcohol blends were used, brake power decreased and the brake specific fuel consumption increased compared to when using gasoline, and CO and HC concentrations decreased as the fuel blends percentage increased.


Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


Author(s):  
Ioannis Templalexis ◽  
Alexios Alexiou ◽  
Vassilios Pachidis ◽  
Ioannis Roumeliotis ◽  
Nikolaos Aretakis

Coupling of high fidelity component calculations with overall engine performance simulations (zooming) can provide more accurate physics and geometry based estimates of component performance. Such a simulation strategy offers the ability to study complex phenomena and their effects on engine performance and enables component design changes to be studied at engine system level. Additionally, component interaction effects can be better captured. Overall, this approach can reduce the need for testing and the engine development time and cost. Different coupling methods and tools have been proposed and developed over the years ranging from integrating the results of the high fidelity code through conventional performance component maps to fully-integrated three-dimensional CFD models. The present paper deals with the direct integration of an in-house two-dimensional (through flow) streamline curvature code (SOCRATES) in a commercial engine performance simulation environment (PROOSIS) with the aim to establish the necessary coupling methodology that will allow future advanced studies to be performed (e.g. engine condition diagnosis, design optimization, mission analysis, distorted flow). A notional two-shaft turbofan model typical for light business jets and trainer aircraft is initially created using components with conventional map-defined performance. Next, a derivative model is produced where the fan component is replaced with one that integrates the high fidelity code. For both cases, an operating line is simulated at sea-level static take-off conditions and their performances are compared. Finally, the versatility of the approach is further demonstrated through a parametric study of various fan design parameters for a better thermodynamic matching with the driving turbine at design point operation.


2014 ◽  
Vol 663 ◽  
pp. 336-341 ◽  
Author(s):  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff ◽  
Aminuddin Saat ◽  
Mazlan Said ◽  
Shaiful Fadzil Zainal Abidin

In this paper, engine simulation tool is used to investigate the effect of variable intake manifold and variable valve timing technologies on the engine performance at full load engine conditions. Here, an engine model of 1.6 litre four cylinders, four stroke spark ignition (SI) engine is constructed using GT-Power software to represent the real engine conditions. This constructed model is then correlated to the experimental data to make sure the accuracy of this model. The comparison results of volumetric efficiency (VE), intake manifold air pressure (MAP), exhaust manifold back pressure (BckPress) and brake specific fuel consumption (BSFC) show very well agreement with the differences of less than 4%. Then this correlated model is used to predict the engine performance at various intake runner lengths (IRL) and various intake valve open (IVO) timings. Design of experiment and optimisation tool are applied to obtain optimum parameters. Here, several configurations of IRL and IVO timing are proposed to give several options during the engine development work. A significant improvement is found at configuration of variable IVO timing and variable IRL compared to fixed IVO timing and fixed IRL.


Sign in / Sign up

Export Citation Format

Share Document