Prediction of De-Swirled Radial Inflow in Rotating Cavities With Hysteresis

Author(s):  
David May ◽  
John W. Chew ◽  
Timothy J. Scanlon

De-swirl nozzles are sometimes used in turbomachinery to reduce the pressure drop when air is drawn radially inwards through a rotating cavity. However, this can lead to non-unique steady state solutions with operating conditions achieved depending on how the steady point is approached. In the present study, a transient, 1D model of flow in a rotating cavity has been created. The model allows the vortex profile to change with through flow rate, and links this to estimates of disk windage, tangential velocity and, consequently, the vortex pressure gradient. The model was applied to the simulation of de-swirl nozzle fed, rotating cavities with radial inflow. The steady vortex flow characteristics (non-dimensional flow versus pressure ratio) predicted by the model were validated for 2 distinct cases. For a smooth rectangular cavity the flow characteristic was predicted using the model’s default parameters. For an engine-representative case with non-axisymmetric geometric features, the flow characteristic of the cavity was reproduced with some alignment of the model. The transient model reproduced experimentally observed hysteresis, discontinuity in operating characteristics, and regions where no steady-state solution could be found. A transient model is required as a steady state model would choose one of the possible solutions without physical justification. In the case of the engine-representative rig, part of the flow characteristic could not be obtained in testing. This is determined to be due to the interaction of the negative resistance region of the vortex and the flow modulating valve characteristic. Measures that allow the full capture of the flow characteristic in rig testing are identified.

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
David May ◽  
John W. Chew ◽  
Timothy J. Scanlon

Deswirl nozzles are sometimes used in turbomachinery to reduce the pressure drop when air is drawn radially inwards through a rotating cavity. However, this can lead to nonunique steady state solutions with operating conditions achieved depending on how the steady point is approached. In the present study, a novel transient, 1D model of flow in a rotating cavity has been created. The model was validated for two distinct cases: a smooth rectangular cavity and an engine-representative case. The transient model reproduced experimentally observed hysteresis, discontinuity in operating characteristics, and regions where no steady-state solution could be found. In the case of the engine-representative rig, part of the flow characteristic could not be obtained in testing. This was determined to be due to the interaction of the negative resistance region of the vortex and the flow-modulating valve characteristic. Measures that allow the full capture of the flow characteristic in rig testing are identified. These results show that inclusion of transient rotating flow effects can be important in turbomachinery air systems modeling. To the authors' knowledge, this is the first model to capture these effects.


Author(s):  
C. Klein ◽  
S. Reitenbach ◽  
D. Schoenweitz ◽  
F. Wolters

Due to a high degree of complexity and computational effort, overall system simulations of jet engines are typically performed as 0-dimensional thermodynamic performance analysis. Within these simulations and especially in the early cycle design phase, the usage of generic component characteristics is common practice. Of course these characteristics often cannot account for true engine component geometries and operating characteristics which may cause serious deviations between simulated and actual component and overall system performance. This leads to the approach of multi-fidelity simulation, often referred to as zooming, where single components of the thermodynamic cycle model are replaced by higher-order procedures. Hereby the consideration of actual component geometries and performance in an overall system context is enabled and global optimization goals may be considered in the engine design process. The purpose of this study is to present a fully automated approach for the integration of a 3D-CFD component simulation into a thermodynamic overall system simulation. As a use case, a 0D-performance model of the IAE-V2527 engine is combined with a CFD model of the appropriate fan component. The methodology is based on the DLR in-house performance synthesis and preliminary design environment GTlab combined with the DLR in-house CFD solver TRACE. Both, the performance calculation as well as the CFD simulation are part of a fully automated process chain within the GTlab environment. The exchange of boundary conditions between the different fidelity levels is accomplished by operating both simulation procedures on a central data model which is one of the essential parts of GTlab. Furthermore iteration management, progress monitoring as well as error handling are part of the GTlab process control environment. Based on the CFD results comprising fan efficiency, pressure ratio and mass flow, a map scaling methodology as it is commonly used for engine condition monitoring purposes is applied within the performance simulation. Hereby the operating behavior of the CFD fan model can be easily transferred into the overall system simulation which consequently leads to a divergent operating characteristic of the fan module. For this reason, all other engine components will see a shift in their operating conditions even in case of otherwise constant boundary conditions. The described simulation procedure is carried out for characteristic operating conditions of the engine.


1997 ◽  
Vol 3 (4) ◽  
pp. 277-293 ◽  
Author(s):  
C. Arcoumanis ◽  
R. F. Martinez-Botas ◽  
J. M. Nouri ◽  
C. C. Su

The performance and exit flow characteristics of two mixed-flow turbines have been investigated under steady-state conditions. The two rotors differ mainly in their inlet angle geometry, one has a nominal constant incidence (rotor B) and the other has a constant blade angle (rotor C), but also in the number of blades. The results showed that the overall peak efficiency of rotor C is higher than that of rotor B. Two different volutes were also used for the tests, differing in their cross-sectional area, which confirm that the new larger area volute turbine has a higher efficiency than the old one, particularly at lower speeds, and a fairly uniform variation with velocity ratio.The flow exiting the blades has been quantified by laser Doppler velocimetry. A difference in the exit flow velocity for rotors B and C with the new volute was observed which is expected given their variation in geometry and performance. The tangential velocities near the shroud resemble a forced vortex flow structure, while a uniform tangential velocity component was measured near the hub. The exit flow angles for both rotor cases decreased rapidly from the shroud to a minimum value in the annular core region before increasing gradually towards the hub. In addition, the exit flow angles with both rotors were reduced with increasing rotational speeds. The magnitude of the absolute flow angle was reduced in the case of rotor C, which may explain the improved steady state performance with this rotor. The results also revealed a correlation between the exit flow angle and the performance of the turbines; a reduction in flow angle resulted in an increase in the overall turbine efficiency.


2020 ◽  
Vol 8 (5) ◽  
pp. 2905-2910

Ejector is a device used for carry low pressure fluids with no mechanical force, high pressure flow. This contains the main nozzle, chamber for suction, chamber for mixing and diffu ser.It is used in vaccum pumps, condensers, steam refrigeration, Because of its simple structure, gas mixing, pneumatic transport (no moving parts) and reliable operation. It is also used in pumps for lifting slurries and waste material containing solids from tanks and sumps. Due to their simplicity and high reliability, however, jet ejectors are widely used in industries with low efficie ncy. The project's goal is to optimize the efficiency of jet ejectors for each operating condition.Consequently, the primary fluid consumption and operating cost is minimized. A commercial computational fluid dynamics tool would be used to analyse the flow characteristics inside the ejector geometry. The results of the CFD simulation could be used to understand the effect of fluid velocity and pressure ratio on the ejector performance. The analysis would also be carried out by varying the primary and secondary nozzle dimensions. Performance of ejectors under various operating conditions is generally obtained through an experimental testing of prototype or scaled ejectors. The availability of performance parameters for such ejectors is limited, and experimental testing can be cost prohibitive.


2021 ◽  
Vol 11 (5) ◽  
pp. 2168
Author(s):  
Fenghui Han ◽  
Zhe Wang ◽  
Yijun Mao ◽  
Jiajian Tan ◽  
Wenhua Li

Radial inlet chambers are widely used in various multistage centrifugal compressors, although they induce extra flow loss and inlet distortions. In this paper, the detailed flow characteristics inside the radial inlet chamber of an industrial centrifugal compressor have been numerically investigated for flow control and performance improvement. First, the numerical results are validated against the experimental data, and flow conditions inside the inlet chambers with different structures are compared. They indicate that, in the non-guide vane scheme, sudden expansions, tangential flows and flow separations in the spiral and annular convergent channels are the major causes of flow loss and distortions, while using guide vanes could introduce additional flow impacts, separations and wakes. Based on the flow analysis, structure improvements have been carried out on the radial inlet chamber, and an average increase of 4.97% has been achieved in the inlet chamber efficiencies over different operating conditions. However, the results further reveal that the increases in the performance and overall flow uniformity just in the radial inlet chamber do not necessarily mean a performance improvement in the downstream components, and the distribution of the positive tangential velocity at the impeller inlet might be a more essential factor for the efficiency of the whole compressor.


1997 ◽  
Vol 119 (1) ◽  
pp. 205-210 ◽  
Author(s):  
R. F. Salant

Previous numerical simulations and experimental observations have shown that the meniscus in a rotary lip seal will be ingested into the sealing zone when the shaft speed exceeds a critical value. The present numerical analysis shows that once the meniscus is ingested, multiple equilibrium operating points exist, so the steady-state operating characteristics of the seal will depend on the history of the seal as well as on the steady-state operating conditions and seal properties. The analysis also shows that if the meniscus moves too close to the liquid-side of the seal, asperity contact between the lip and the shaft will occur.


Author(s):  
A.R. ABLAEV

The design methods for shipboard shell-and-tube oil and water coolers are presented. As a result of the review, it was revealed that currently there is no systematic and complete methodological support for the integrated computer-aided design of ship heat exchangers (CAD SHE), which in turn would be integrated into the CAD / CAM / CAE system and later on into the production preparation. From the analysis it follows that not all operating conditions of ship power plants are provided with an oil cooler. This is due to the fact that the surface of the cooler and its flow characteristics were calculated only on the nominal mode, and other operating characteristics were not evaluated. The complexity of the work of ship oil and water coolers lies in the fact that the parameters of the heat load on these devices change, the temperature and salinity of the outboard water change depending on the navigation area. Determining the effect of the oil cooler on changing the power of the power plant when the characteristics of the cooling coolant (seawater) change, such as initial temperature, flow rate, salinity, without additional testing in each mode is difficult. It is also difficult to change the salinity and temperature of the seawater during the tests. Thus, the designer of the power plant does not know how the mode of its operation will change when the ship (ship) in the World Ocean is different. This indicates the need to improve the methods of thermal and hydrodynamic calculations of SHE with their integration into the overall design system. Under these conditions, the problem of using integrated CAD SHE is of particular relevance.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


Sign in / Sign up

Export Citation Format

Share Document