Impact of Swirl on the Sensitivity of the Radial Mode Analysis in Turbomachinery

Author(s):  
Juan D. Laguna ◽  
Michael Bartelt ◽  
Joerg R. Seume

Sound measurements in turbomachinery are a prerequisite for the study and consequent understanding of sound propagation mechanisms. For analyzing these measurements, the Radial Mode Analysis (RMA) is applied. This method decomposes the transmitted sound field in dominant acoustical modes at specific frequencies. Before an experimental campaign is carried out, measurement parameters are selected such that the uncertainty in the results from the application of the RMA is minimized. In order to minimize uncertainties, a sensitivity analysis of the parameters which influence the overall error of the RMA is performed. This analysis focuses mainly on the output of a measurable quantity, namely on the propagating mode amplitudes. Using a numerical simulation, modal structures are generated based upon real turbine operating data with swirling flow and a characteristic operating temperature. The swirling flow is generated by adding an axial vortex to a constant flow-velocity profile. The results show that the sound field varies under consideration of swirling mean flow compared to uniform flow conditions. In the present case, higher-order modes dominate the propagating sound structure. The parameters studied for assessing the sensitivity are the signal-to-noise ratio of the measurement sensors, the number of triggered revolutions, the azimuthal spacing of the sensors, and a triggering delay. The sensitivity analysis gives a detailed insight into the measurement parameters influencing the output of the RMA, e.g. that small triggering delays cause appreciable measurement errors. This knowledge is used to define the requirements for high fidelity measurements.

Author(s):  
Akif Mumcu ◽  
Christian Keller ◽  
C. Mandanna Hurfar ◽  
Joerg R. Seume

A strong focus in the development of modern aircraft engines is the reduction of the engine tonal core noise. For the development of efficient noise reduction techniques, a detailed understanding of the sound transmission throughout all turbomachinery components of the engine is mandatory. In this paper an excitation system is developed to generate turbomachinery-specific sound fields by controlling their circumferential and radial mode order. The excitation system consists of two rows of eight loudspeakers distributed circumferentially around the outer duct wall. This paper gives a detailed description of the analytically- and numerically-supported design methodology of an optimized excitation system, as well as an optimized microphone array mounted flush with the outer duct wall. A sensitivity analysis of the loudspeaker array and of the microphone array with respect to distance and frequency is then carried out numerically. To analyze the microphone signals and to deconstruct the propagating sound field into its modal components, a Radial Mode Analysis (RMA) is carried out. To ensure high-quality RMA results, the axial distribution of the microphones is optimized with respect to the condition number of the array’s transfer matrix. The procedure explained in this paper shall help guide the development of acoustic excitation and microphone array systems for experiments to better understand sound propagation in turbomachinery and flow ducts.


2011 ◽  
Vol 105-107 ◽  
pp. 1839-1842
Author(s):  
Yi Hong Li ◽  
Ai Ying Yang

This paper covers the requirement and measurement of sound quality in the surround sound classroom. Based on the characteristics of the sound field, this paper specially deals with the design of acoustics requirement of the characteristics of reverberation frequency and sound propagation. In order to meet the requirements of recording in signal to noise ratio, comprehensive methods in noise decrease are adopted in design, which include the reduction of noise in room background. Through the checking of the testing data and the evaluation of the users, various acoustics norms meet the requirements of acoustics and the demands of the using.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3455
Author(s):  
Francisco Javier Meca Meca ◽  
Ernesto Martín-Gorostiza ◽  
Miguel Ángel García-Garrido ◽  
David Salido-Monzú

Transimpedance amplifiers (TIA) are widely used for front-end signal conditioning in many optical distance measuring applications in which high accuracy is often required. Small effects due to the real characteristics of the components and the parasitic elements in the circuit board may cause the error to rise to unacceptable levels. In this work we study these effects on the TIA delay time error and deduce analytic expressions, taking into account the trade-off between the uncertainties caused by the delay time instability and by the signal-to-noise ratio. A specific continuous-wave phase-shift case study is shown to illustrate the analysis, and further compared with real measurements. General strategies and conclusions, useful for designers of this kind of system, are extracted too. The study and results show that the delay time thermal stability is a key determinant factor in the measured distance accuracy and, without an adequate design, moderate temperature variations of the TIA can cause extremely high measurement errors.


1988 ◽  
Vol 110 (4) ◽  
pp. 545-551 ◽  
Author(s):  
A. Cummings ◽  
I.-J. Chang

A quasi one-dimensional analysis of sound transmission in a flow duct lined with an array of nonlinear resonators is described. The solution to the equations describing the sound field and the hydrodynamic flow in the neighborhood of the resonator orifices is performed numerically in the time domain, with the object of properly accounting for the nonlinear interaction between the acoustic field and the resonators. Experimental data are compared to numerical computations in the time domain and generally very good agreement is noted. The method described here may readily be extended for use in the design of exhaust mufflers for internal combustion engines.


2000 ◽  
Author(s):  
Alex Povitsky

Abstract In this study we consider one method of parallelization of implicit numerical schemes on multiprocessor systems. Then, the parallel high-order compact numerical algorithm is applied to physics of amplification of sound waves in a non-uniform mean flow. Due to the pipelined nature of this algorithm, its efficient parallelization is based on scheduling of processors for other computational tasks while otherwise the processors stay idle. In turn, the proposed scheduling algorithm is taken as a special case of the general shop scheduling problem and possible extentions and generalizations of the proposed scheduling methodology are discussed. Numerical results are discussed in terms of baroclinic generation of wave-associated vorticity that appear to be a key process in energy transfer between a non-uniform mean flow and a propagating disturbance. The discovered phenomenon leads to significant amplification of sound waves and controls the direction of sound propagation.


2013 ◽  
Vol 681 ◽  
pp. 200-203 ◽  
Author(s):  
Lei Zhang ◽  
Zhi Yong Hao

In the research of the automobile front dash, the key of design is that acoustic need should be satisfied while losing the weight. In this paper, a structure-sound field coupling model of car body space is built. To fulfill the request, the dash panel is divided into several parts, and the sensitivity of thickness of each parts to the sound at the position of driver’s and co-pilot’s ears is calculated. Based on the sensitivity, the driver’s and the co-pilot’s parotic sound pressure is optimized while reducing the weight of front dash. The result proves that lightweight design is successful, which gives the reference to the design of the car body panels.


2018 ◽  
Vol 859 ◽  
pp. 516-542 ◽  
Author(s):  
Calum S. Skene ◽  
Peter J. Schmid

A linear numerical study is conducted to quantify the effect of swirl on the response behaviour of premixed lean flames to general harmonic excitation in the inlet, upstream of combustion. This study considers axisymmetric M-flames and is based on the linearised compressible Navier–Stokes equations augmented by a simple one-step irreversible chemical reaction. Optimal frequency response gains for both axisymmetric and non-axisymmetric perturbations are computed via a direct–adjoint methodology and singular value decompositions. The high-dimensional parameter space, containing perturbation and base-flow parameters, is explored by taking advantage of generic sensitivity information gained from the adjoint solutions. This information is then tailored to specific parametric sensitivities by first-order perturbation expansions of the singular triplets about the respective parameters. Valuable flow information, at a negligible computational cost, is gained by simple weighted scalar products between direct and adjoint solutions. We find that for non-swirling flows, a mode with azimuthal wavenumber $m=2$ is the most efficiently driven structure. The structural mechanism underlying the optimal gains is shown to be the Orr mechanism for $m=0$ and a blend of Orr and other mechanisms, such as lift-up, for other azimuthal wavenumbers. Further to this, velocity and pressure perturbations are shown to make up the optimal input and output showing that the thermoacoustic mechanism is crucial in large energy amplifications. For $m=0$ these velocity perturbations are mainly longitudinal, but for higher wavenumbers azimuthal velocity fluctuations become prominent, especially in the non-swirling case. Sensitivity analyses are carried out with respect to the Mach number, Reynolds number and swirl number, and the accuracy of parametric gradients of the frequency response curve is assessed. The sensitivity analysis reveals that increases in Reynolds and Mach numbers yield higher gains, through a decrease in temperature diffusion. A rise in mean-flow swirl is shown to diminish the gain, with increased damping for higher azimuthal wavenumbers. This leads to a reordering of the most effectively amplified mode, with the axisymmetric ($m=0$) mode becoming the dominant structure at moderate swirl numbers.


2021 ◽  
Vol 3 (397) ◽  
pp. 97-114
Author(s):  
A. Kleschev ◽  

Object and purpose of research. This paper obtains solutions and performs estimations of characteristics of sound reflection and scattering by ideal and elastic bodies of various shapes (analytical and non-analytical) near media interface, or underwater sonic channel, or in a planar waveguide with a solid elastic bottom. Materials and methods. The harmonic signals are investigated with the method of normal waves based on the phase velocity of signal propagation, and impulse signals related to the energy transfer are studied using the method of real and imaginary sources and scatterers based on the group velocity of propagation. Main results. The scattered sound field is calculated for ideal spheroids (elongated and compressed) at fluid – ideal medium interface. The spectrum of a scattered impulse signal is calculated for a body placed in a sonic channel. First reflected impulses are found for an ideal spheroid in a planar waveguide with anisotropic bottom. Conclusion. In the studies of diffraction characteristics of bodies at media interfaces it was found that the main contribution to scattered field is given by interference of scattered fields rather than interaction of scatterers (real or imaginary). It is shown that at long distances the spectral characteristics of the channel itself have a prevalent role. When impulse sound signals in the planar waveguide are used, it is necessary to apply the method of real and imaginary sources and scatterers based on the group velocity of sound propagation.


Sign in / Sign up

Export Citation Format

Share Document