A Theoretical and Experimental Analysis of the Sealing Capability of a Membrane Seal

Author(s):  
Stacie Tibos ◽  
Randhir Aujla ◽  
Przemyslaw Pyzik ◽  
Martin Lewis ◽  
Sascha Justl

Improvements in turbine performance are increasingly being driven by the need to control leakage both in the main gas path as well as secondary air flow systems. Membrane seals have long been established as a method of sealing in some of the harshest of environments found in gas turbines. The membrane seal has a wide usage in gas turbines for stationary component interface sealing. The geometry is of plate construction with bulbous ends, the seals are assembled vertically and are retained by the component grooves. The grooves allow relative sliding and rotation against their surfaces a necessary feature, since during operation the seal needs to withstand relative movements due to thermal growth, vibratory forces, excitation and assembly loads. However, more accurate leakage estimates are required. Thus, in order to evaluate the complete performance characteristics of the seal for a wide range of working conditions, a theoretical and experimental campaign was undertaken. The membrane seal performance curves were created based on a series of tests performed in a specially designed rig. The rig utilised an actuation system that allowed for the precise adjustment of the seal’s relative position in two directions while performing the tests at a given working condition. It was noted that not only the movement and deformation of the membrane but also, assembly clearances and surface condition of the components have an impact on the seal’s performance. To assist in the understanding of the influence of the changing parameters on the performance of the seal an FEA study was undertaken employing known data to aid the understanding and improve the knowledge of how the seal behaves under specific engine conditions. The evaluation gives confidence in the experimental test results.

1970 ◽  
Vol 185 (1) ◽  
pp. 407-424 ◽  
Author(s):  
H. R. M. Craig ◽  
H. J. A. Cox

A comprehensive method of estimating the performance of axial flow steam and gas turbines is presented, based on analysis of linear cascade tests on blading, on a number of turbine test results, and on air tests of model casings. The validity of the use of such data is briefly considered. Data are presented to allow performance estimation of actual machines over a wide range of Reynolds number, Mach number, aspect ratio and other relevant variables. The use of the method in connection with three-dimensional methods of flow estimation is considered, and data presented showing encouraging agreement between estimates and available test results. Finally ‘carpets’ are presented showing the trends in efficiencies that are attainable in turbines designed over a wide range of loading, axial velocity/blade speed ratio, Reynolds number and aspect ratio.


Author(s):  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Luca Innocenti ◽  
Mirko Micio

Reliable design of secondary air system is one of the main tasks for the safety, unfailing and performance of gas turbine engines. To meet the increasing demands of gas turbines design, improved tools in prediction of the secondary air system behavior over a wide range of operating conditions are needed. A real gas turbine secondary air system includes several components, therefore its analysis is not carried out through a complete CFD approach. Usually, that predictions are performed using codes, based on simplified approach which allows to evaluate the flow characteristics in each branch of the air system requiring very poor computational resources and few calculation time. Generally the available simplified commercial packages allow to correctly solve only some of the components of a real air system and often the elements with a more complex flow structure cannot be studied; among such elements, the analysis of rotating cavities is very hard. This paper deals with a design-tool developed at the University of Florence for the simulation of rotating cavities. This simplified in-house code solves the governing equations for steady one-dimensional axysimmetric flow using experimental correlations both to incorporate flow phenomena caused by multidimensional effects, like heat transfer and flow field losses, and to evaluate the circumferential component of velocity. Although this calculation approach does not enable a correct modeling of the turbulent flow within a wheel space cavity, the authors tried to create an accurate model taking into account the effects of inner and outer flow extraction, rotor and stator drag, leakages, injection momentum and, finally, the shroud/rim seal effects on cavity ingestion. The simplified calculation tool was designed to simulate the flow in a rotating cavity with radial outflow both with a Batchelor and/or Stewartson flow structures. A primary 1D-code testing campaign is available in the literature [1]. In the present paper the authors develop, using CFD tools, reliable correlations for both stator and rotor friction coefficients and provide a full 1D-code validation comparing, due to lack of experimental data, the in house design-code predictions with those evaluated by CFD.


Author(s):  
D. Brillert ◽  
A. W. Reichert ◽  
H. Simon

The continuous improvement in thermal efficiency of gas turbines is primarily achieved by increasing the turbine inlet temperatures without, however, affecting the thermal stability and the fatigue strength of the blades which must be guaranteed for their entire service life. The precise analysis of secondary air systems is therefore of crucial importance for the design of gas turbines. Stationary and rotating passages constitute important elements of secondary air systems, and this paper focuses on the calculation of the characteristics of fluid flow through stationary and rotating passages (or bores) as a function of passage length, asymmetric inflow (i.e. crossflow at the inlet) and inlet edge geometry (i.e. rounded or sharp–edged inlets). A simple physical model is developed on the basis of the simple and thoroughly investigated passage flow. The model is then matched to a large number of test results taken from the literature. The result is a versatile tool for calculating flow losses in rotating and stationary passages.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Daniel Feseker ◽  
Mats Kinell ◽  
Matthias Neef

The ability to understand and predict the pressure losses of orifices is important in order to improve the air flow within the secondary air system. This experimental study investigates the behavior of the discharge coefficient for circular orifices with inlet cross flow which is a common flow case in gas turbines. Examples of this are at the inlet of a film cooling hole or the feeding of air to a blade through an orifice in a rotor disk. Measurements were conducted for a total number of 38 orifices, covering a wide range of length-to-diameter ratios, including short and long orifices with varying inlet geometries. Up to five different chamfer-to-diameter and radius-to-diameter ratios were tested per orifice length. Furthermore, the static pressure ratio across the orifice was varied between 1.05 and 1.6 for all examined orifices. The results of this comprehensive investigation demonstrate the beneficial influence of rounded inlet geometries and the ability to decrease pressure losses, which is especially true for higher cross flow ratios where the reduction of the pressure loss in comparison to sharp-edged holes can be as high as 54%. With some exceptions, the chamfered orifices show a similar behavior as the rounded ones but with generally lower discharge coefficients. Nevertheless, a chamfered inlet yields lower pressure losses than a sharp-edged inlet. The obtained experimental data were used to develop two correlations for the discharge coefficient as a function of geometrical as well as flow properties.


Author(s):  
Rahul A. Bidkar ◽  
Xiaoqing Zheng ◽  
Mehmet Demiroglu ◽  
Norman Turnquist

Brush seals are widely used as flexible seals for rotor-stator and stator-stator gaps in power generation turbo-machinery like steam turbines, gas turbines, generators and aircraft engines. Understanding the force interactions between a brush seal bristle pack and the rotor is important for avoiding overheating and rotor dynamic instabilities caused by excessive brush seal forces. Brush seal stiffness (i.e. brush seal force per unit circumferential length per unit incursion of the rotor) is usually measured and characterized at atmospheric pressure conditions. However, the inter-bristle forces, the blow-down forces and the friction forces between the backplate and the bristle pack change in the presence of a pressure loading, thereby changing the stiffness of the brush seal in the presence of this pressure loading. Furthermore, brush seals exhibit different hysteresis behavior under different pressure loading conditions. Understanding the increased brush seal stiffness and the increased hysteresis behavior of brush seals in the presence of a pressure loading is important for designing brush seals for higher pressure applications. In this article, we present the development of a test fixture for measuring the stiffness of brush seals subjected to a pressure loading. The fixture allows for measurement of the bristle pack forces in the presence of a pressure loading on the seal while the rotor is incrementally pushed (radially) into the bristle pack. Following the development of this test fixture, we present representative test results on three sample seals to show the trends in brush seal stiffness as the pressure loading is increased. Specifically, we study the effect of different brush seal design parameters on the stiffness of brush seals over a wide range of pressure loadings. These test data can be used for developing predictive models for brush seal stiffness under pressure loading. Furthermore, we demonstrate the utility of this fixture in studying the hysteresis exhibited by brush seals along with the importance of the backplate pressure balance feature present in several brush seal designs. The test results validate the bilinear force-displacement curves previously reported in the literature.


Author(s):  
Daniel Feseker ◽  
Mats Kinell ◽  
Matthias Neef

The cooling air in the secondary air system of gas turbines is controlled and metered by numerous restrictors, mainly in the shape of orifices. The ability to understand and predict the associated pressure losses are important in order to improve the air flow in the secondary air system. This experimental study investigates the behavior of the discharge coefficient for circular orifices with inlet cross flow which is a common flow case in gas turbines. Examples of this are at the inlet of a film cooling hole or the feeding of air to a blade through an orifice in a rotor disc. Measurements were conducted for a total number of 38 orifices, covering a wide range of length-to-diameter ratios, including short and long orifices with varying inlet geometries. Up to five different chamfer-to-diameter and radius-to-diameter ratios were tested per orifice length. Furthermore, the static pressure ratio across the orifice was varied between 1.05 and 1.6 for all examined orifices. The results of this comprehensive investigation demonstrate the beneficial influence of rounded inlet geometries and the ability to decrease pressure losses, which is especially true for higher cross flow ratios where the reduction of the pressure loss in comparison to sharp edged holes can be as high as 54%. With some exceptions, the chamfered orifices show a similar behavior as the rounded ones but with generally lower discharge coefficients. Nevertheless, a chamfered inlet yields lower pressure losses than a sharp edged inlet. The obtained experimental data was used to develop two correlations for the discharge coefficient as a function of geometrical as well as flow properties.


Author(s):  
Bertram Janus ◽  
Joachim Bigalk ◽  
Lennard Helmers ◽  
Benjamin Witzel ◽  
Yohannes Ghermay ◽  
...  

An upgrade of the lean premixed combustion system installed in the SGT5-8000H in Irsching/Germany was developed for the 50 Hz and 60 Hz versions of the SGTX-8000H gas turbines. It features lower CO and NOx emissions by improving combustion aerodynamics and reduction of the air consumption of the combustion system. Furthermore an improved secondary air managing system increases the amount of air, which can be supplied in a controllable way to the turbine in part load operation and, thus, increases the combustor temperature. This is done in stepwise increasing the air mass flow to the turbine by feeding compressor exit air to different distinct turbine stages. All in all this system extends the turn down capability beyond the level achievable by the new combustion system alone. The new combustion system and the secondary air managing system were installed in full scale and tested in the SGT6-8000H test facility of the Siemens Gas turbine plant in Berlin. The results have subsequently successfully been validated in the first commercial application on a customer site. This paper presents the technical features of the systems, the development program and the test results.


Author(s):  
Karl W. Karstensen ◽  
Jesse O. Wiggins

Gas turbines have been accepted in naval surface ship applications, and considerable effort has been made to improve their fuel consumption, particularly at part-load operation. This is an important parameter for shipboard engines because both propulsion and electrical-generator engines spend most of their lives operating at off-design power. An effective way to improve part-load efficiency of recuperated gas turbines is by using a variable power turbine nozzle. This paper discusses the successful use of variable power turbine nozzles in several applications in a family of engines developed for vehicular, industrial, and marine use. These engines incorporate a variable power turbine nozzle and primary surface recuperator to yield specific fuel consumption that rivals that of medium speed diesels. The paper concentrates on the experience with the variable nozzle, tracing its derivation from an existing fixed vane nozzle and its use across a wide range of engine sizes and applications. Emphasis is placed on its potential in marine propulsion and auxiliary gas turbines.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


Sign in / Sign up

Export Citation Format

Share Document