Preliminary Experimental Study of Precooler in Supercritical CO2 Brayton Cycle

Author(s):  
Seungjoon Baik ◽  
Seong Gu Kim ◽  
Seong Jun Bae ◽  
Yoonhan Ahn ◽  
Jekyoung Lee ◽  
...  

The supercritical carbon dioxide (S-CO2) Brayton power conversion cycle has been receiving worldwide attention because of high thermal efficiency due to relatively low compression work near the critical point (30.98°C, 7.38MPa) of CO2. The S-CO2 Brayton cycle can achieve high efficiency with simple cycle configuration at moderate turbine inlet temperature (450∼650°C) and relatively high density of S-CO2 makes possible to design compact power conversion cycle. In order to achieve compact cycle layout, a highly compact heat exchanger such as printed circuit heat exchanger (PCHE) is widely used. Since, the cycle thermal efficiency is a strong function of the compressor inlet temperature in the S-CO2 power cycle, the research team at KAIST is focusing on the thermal hydraulic performance of the PCHE as a precooler. The investigation was performed by first developing a PCHE in-house design code named KAIST-HXD. This was followed by constructing the designed PCHE and testing it in the KAIST experimental facility, S-CO2PE. The test results of the PCHE were compared to the test results of a shell and tube type heat exchanger as well.

2021 ◽  
Vol 242 ◽  
pp. 01002
Author(s):  
Tianye Liu ◽  
Jingze Yang ◽  
Zhen Yang ◽  
Yuanyuan Duan

The supercritical CO2 Brayton cycle integrated with a solar power tower system has the advantages of high efficiency, compact cycle structure, strong scalability, and great power generation potential, which can positively deal with the energy crisis and global warming. The selection and optimization of design points are very important for actual operating situations. In this paper, the thermodynamic and economic models of the 10 MWe supercritical CO2 Brayton cycle for application in solar power tower system are established. Multi-objective optimizations of the simple recuperative cycle, reheating cycle, and recompression cycle at different compressor inlet temperature are completed. The thermal efficiency and the levelized energy cost are selected as the fitness functions. The ranges of the optimal compressor inlet pressure and reheating pressure on the Pareto frontier are analyzed. Finally, multiobjective optimizations and analysis of the supercritical CO2 Brayton cycle at different ambient temperature are carried out. This paper investigates the influence of the compressor inlet temperature and ambient temperature on the thermal efficiency and economic performance of the supercritical CO2 Brayton cycle.


Author(s):  
Jofred Joseph ◽  
Satish Kumar ◽  
Tanmay Vasal ◽  
N. Theivarajan

Abstract Enhancing the safety and economic competitiveness are major objectives in the development of advanced reactor designs with emphasis on the design of systems or components of the nuclear systems. Innovative power cycle development is another potential option to achieve these objectives. Sodium cooled fast reactor (SFR) is one among the six reactor design concepts identified by the Gen IV International Forum for development to meet the technology goals for new nuclear energy system. Similar to the power cycle used in conventional fossil fuel based thermal power plants, sodium-cooled fast reactors have adopted the Rankine cycle based power conversion system. However, the possibility of sodium water reaction is a major concern and it becomes necessary to adopt means of early detection of leaks and isolation of the affected SG module for mitigating any adverse impact of sodium water reaction. The high exothermic nature of the reaction calls for introducing an intermediate sodium heat transport loop, leading to high overall plant cost hindering commercialization of sodium fast reactors. The Indian Prototype Fast Breeder Reactor (PFBR) also uses Rankine cycle in the power generation system. The superheated steam temperature has been set at 490 degree Celsius based on optimisation studies and material limitations. Additional Fast Breeder reactors are planned in near future and further work is being done to develop more advanced sodium cooled fast reactors. The closed Brayton cycle is a promising alternative to conventional Rankine cycle. By selecting an inert gas or a gas with milder reaction with sodium, the vigorous sodium water reaction can be avoided and significant cost savings in the turbine island can be achieved as gas turbine power conversion systems are of much smaller size than comparable steam turbine systems due to their higher power density. In the study, various Brayton cycle designs on different working gases have been explored. Supercritical-CO2 (s-CO2), helium and nitrogen cycle designs are analyzed and compared in terms of cycle efficiency, component performance and physical size. The thermal efficiencies at the turbine inlet temperature of Indian PFBR have been compared for Rankine cycle and Brayton cycle based on different working fluids. Also binary mixtures of different gases are investigated to develop a more safe and efficient power generation system. Helium does not interact with sodium and other structural materials even at very high temperatures but its thermal performance is low when compared to other fluids. Nitrogen being an inert gas does not react with sodium and can serve to utilise existing turbomachinery because of the similarity with atmospheric air. The supercritical CO2 based cycle has shown best thermodynamic performance and efficiency when compared to other Brayton cycles for the turbine inlet temperature of Indian PFBR. CO2 also reacts with sodium but the reaction is mild compared to sodium water reaction. The cycle efficiency of the s-CO2 cycle can be further improved by adopting multiple reheating, inter cooling and recuperation.


Author(s):  
Jin Young Heo ◽  
Jinsu Kwon ◽  
Jeong Ik Lee

For the concentrating solar power (CSP) applications, the supercritical carbon dioxide (s-CO2) power cycle is beneficial in many aspects, including high cycle efficiencies, reduced component sizing, and potential for the dry cooling option. More research is involved in improving this technology to realize the s-CO2 cycle as a candidate to replace the conventional power conversion systems for CSP applications. In this study, an isothermal compressor, a turbomachine which undergoes the compression process at constant temperature to minimize compression work, is applied to the s-CO2 power cycle layout. To investigate the cycle performance changes of adopting the novel technology, a framework for defining the efficiency of the isothermal compressor is revised and suggested. This study demonstrates how the compression work for the isothermal compressor is reduced, up to 50%, compared to that of the conventional compressor under varying compressor inlet conditions. Furthermore, the simple recuperated and recompression Brayton cycle layouts using s-CO2 as a working fluid are evaluated for the CSP applications. Results show that for compressor inlet temperatures (CIT) near the critical point, the recompression Brayton cycle using an isothermal compressor has 0.2–1.0% point higher cycle thermal efficiency compared to its reference cycle. For higher CIT values, the recompression cycle using an isothermal compressor can perform above 50% in thermal efficiency for a wider range of CIT than the reference cycle. Adopting an isothermal compressor in the s-CO2 layout can imply larger heat exchange area for the compressor which requires further development.


Author(s):  
Ali S. Alsagri ◽  
Andrew Chiasson ◽  
Ahmad Aljabr

A thermodynamic analysis and optimization of a newly-conceived combined power cycle were conducted in this paper for the purpose of improving overall thermal efficiency of power cycles by attempting to minimize thermodynamic irreversibilities and waste heat as a consequence of the Second Law. The power cycle concept comprises a topping advanced recompression supercritical carbon dioxide (sCO2) Brayton cycle and a bottoming transcritical carbon dioxide (tCO2) Rankine cycle. The bottoming cycle configurations included a simple tCO2 Rankine cycle and a split tCO2 Rankine cycle. The topping sCO2 recompression Brayton cycle used a combustion chamber as a heat source, and waste heat from a topping cycle was recovered by the tCO2 Rankine cycle due to an added high efficiency recuperator for generating electricity. The combined cycle configurations were thermodynamically modeled and optimized using an Engineering Equation Solver (EES) software. Simple bottoming tCO2 Rankine cycle cannot fully recover the waste heat due to the high exhaust temperature from the top cycle, and therefore an advance split tCO2 Rankine cycle was employed in order to recover most of the waste heat. Results show that the highest thermal efficiency was obtained with recompression sCO2 Brayton cycle – split flow tCO2 Rankine cycle. Also, the results show that the combined CO2 cycles is a promising technology compared to conventional cycles.


Author(s):  
Jin Young Heo ◽  
Yoonhan Ahn ◽  
Jeong Ik Lee

For the concentrating solar power (CSP) applications, the supercritical carbon dioxide (s-CO2) power cycle is beneficial in many aspects, including higher cycle efficiencies, reduced component sizing, and potential for the dry cooling option, in comparison to the conventional steam Rankine cycle. Increasing number of investigations and research projects are involved in improving this technology to realize the s-CO2 cycle as a candidate to replace the conventional power conversion systems. In this conceptual study, an isothermal compressor, a turbomachine which undergoes the compression process at constant temperature to minimize compression work, is applied to the s-CO2 power cycle layout. To investigate the cycle performance changes of adopting the novel technology, a framework for defining the efficiency of the isothermal compressor is revised and suggested. This study demonstrates how the compression work for the isothermal compressor is reduced compared to that of the conventional compressor under varying compressor inlet conditions. Furthermore, the recompression Brayton cycle layout using s-CO2 as a working fluid is evaluated for the CSP applications. Results show that for compressor inlet temperatures (CIT) near the critical point, the simple recuperated Brayton cycle with an isothermal compressor performs better than the given reference recompression cycle by 6–10% points in terms of cycle thermal efficiency. For higher CIT values, the recompression cycle using an isothermal compressor can perform above 50% in thermal efficiency. Adopting an isothermal compressor in the s-CO2 layout, however, can imply larger heat exchange area for the compressor which requires further detailed design for realization in the future.


Author(s):  
Ali S. Alsagri ◽  
Andrew D. Chiasson

A thermodynamic analysis and optimization of a newly-conceived combined power cycle were conducted in this paper for the purpose of improving overall thermal efficiency of power cycles by attempting to minimize thermodynamic irreversibilities and waste heat as a consequence of the Second Law. The power cycle concept comprises a topping advanced recompression supercritical carbon dioxide (sCO2) Brayton cycle and a bottoming transcritical carbon dioxide (tCO2) Rankine cycle. The bottoming cycle configurations included a simple tCO2 Rankine cycle and a split tCO2 Rankine cycle. The topping sCO2 recompression Brayton cycle used a combustion chamber as a heat source, and waste heat from a topping cycle was recovered by the tCO2 Rankine cycle due to an added high efficiency recuperator for generating electricity. The combined cycle configurations were thermodynamically modeled and optimized using an Engineering Equation Solver (EES) software. Simple bottoming tCO2 Rankine cycle cannot fully recover the waste heat due to the high exhaust temperature from the top cycle, and therefore an advance split tCO2 Rankine cycle was employed in order to recover most of the waste heat. Results show that the highest thermal efficiency was obtained with recompression sCO2 Brayton cycle – split flow tCO2 Rankine cycle. Also, the results show that the combined CO2 cycles is a promising technology compared to conventional cycles.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1741 ◽  
Author(s):  
Aofang Yu ◽  
Wen Su ◽  
Li Zhao ◽  
Xinxing Lin ◽  
Naijun Zhou

As one of the promising technologies to meet the increasing demand for electricity, supercritical CO2 (S-CO2) Brayton cycle has the characteristics of high efficiency, economic structure, and compact turbomachinery. These characteristics are closely related to the thermodynamic properties of working fluid. When CO2 is mixed with other gas, cycle parameters are determined by the constituent and the mass fraction of CO2. Therefore, in this contribution, a thermodynamic model is developed and validated for the recompression cycle. Seven types of CO2-based mixtures, namely CO2-Xe, CO2-Kr, CO2-O2, CO2-Ar, CO2-N2, CO2-Ne, and CO2-He, are employed. At different CO2 mass fractions, cycle parameters are determined under a fixed compressor inlet temperature, based on the maximization of cycle efficiency. Cycle performance and recuperators’ parameters are comprehensively compared for different CO2-based mixtures. Furthermore, in order to investigate the effect of compressor inlet temperature, cycle parameters of CO2-N2 are obtained under four different temperatures. From the obtained results, it can be concluded that, as the mass fraction of CO2 increases, different mixtures show different variations of cycle performance and recuperators’ parameters. In generally, the performance order of mixtures coincides with the descending or ascending order of corresponding critical temperatures. Performance curves of these considered mixtures locate between the curves of CO2-Xe and CO2-He. Meanwhile, the curves of CO2-O2 and CO2-N2 are always closed to each other at high CO2 mass fractions. In addition, with the increase of compressor inlet temperature, cycle performance decreases, and more heat transfer occurs in the recuperators.


Author(s):  
Tom G. Lewis ◽  
Edward J. Parma ◽  
Steven A. Wright ◽  
Milton E. Vernon ◽  
Darryn D. Fleming ◽  
...  

The advanced nuclear concept group at Sandia National Laboratories has been investigating two advance right size reactors (RSR); this paper will discuss one of these two systems. The supercritical carbon dioxide (S-CO2), direct cycle gas fast reactor (SC-GFR) concept was developed to determine the feasibility of a RSR type concept using S-CO2 as the working fluid in a direct cycle fast reactor. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this paper show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The SC-GFR concept is a relatively small (200 MWth) fast reactor that is cooled with CO2 at a pressure of 20 MPa. The CO2 flows out of the reactor vessel at ∼650°C directly into a turbine-generator unit to produce electrical power. The thermodynamic cycle that is used for the power conversion is a supercritical gas Brayton cycle with CO2 as the working fluid. With the CO2 gas near the critical point after the heat rejection portion of the cycle, it can be compressed with less power as compared to a standard gas Brayton cycle, thereby allowing for a higher thermal efficiency at the same turbine inlet temperature. A cycle efficiency of 45–50% is theoretically achievable for an optimized configuration. The major advantages of the concept include the following: • High thermal efficiency at relatively low reactor outlet temperatures; • Compact, cost-effective, power conversion system; • Non-flammable, stable, inert, non-toxic, inexpensive, and well-characterized coolant; • Potential long-life core and closed fuel cycle; • Small void reactivity worth from loss of coolant; • Natural convection decay heat removal; • Feasible design using today’s technologies. The goal of this work was to develop a SC-GFR concept and perform scoping analyses, including a review of other concepts that are similar in nature, to determine concept feasibility, advantages, disadvantages, and issues requiring further investigation. Overall, the SC-GFR concept as described in this paper appears feasible and warrants further study.


2009 ◽  
Vol 12 (4) ◽  
pp. 39-46
Author(s):  
Kien Chi Le

The analyses on Joule-Brayton cycle, which could be used for a high efficiency power generation system, using the temperature and the pressure of compressor have been carried out. As a result, when the ratio of maximum temperature to the minimum temperature in the cycle increased, the thermal efficiency increased. By analyzing the efficiency and the output power, it is understood that the ratio of compressor outlet pressure to the compressor inlet pressure, as well as the pressure ratio across the compressor for maximum thermal efficiency and maximum output power are different. The maximum thermal efficiency could be an important technical parameter; however, the maximum output power is significant in the cost and the size of system. For that reason, depending on the required system for maximum efficiency or for maximum power, the ratio of temperature and pressure are designed


Author(s):  
T. Conboy ◽  
J. Pasch ◽  
D. Fleming

The US Department of Energy is currently focused on the development of next-generation nuclear power reactors, with an eye towards improved efficiency and reduced capital cost. To this end, reactors using a closed-Brayton power conversion cycle have been proposed as an attractive alternative to steam turbines. The supercritical-CO2 recompression cycle has been identified as a leading candidate for this application as it can achieve high efficiency at relatively low operating temperatures with extremely compact turbomachinery. Sandia National Laboratories has been a leader in hardware and component development for the supercritical-CO2 cycle. With contractor Barber-Nichols Inc, Sandia has constructed a megawatt-class S-CO2 cycle test-loop to investigate the key areas of technological uncertainty for this power cycle, and to confirm model estimates of advantageous thermodynamic performance. Until recently, much of the work has centered on the simple S-CO2 cycle — a recuperated Brayton loop with a single turbine and compressor. However work has recently progressed to a recompression cycle with split-shaft turbo-alternator-compressors, unlocking the potential for much greater efficiency power conversion, but introducing greater complexity in control operations. The following sections use testing experience to frame control actions made by test loop operators in bringing the recompression cycle from cold startup conditions through transition to power generation on both turbines, to the desired test conditions, and finally to a safe shutdown. During this process, considerations regarding turbocompressor thrust state, CO2 thermodynamic state at the compressor inlet, compressor surge and stall, turbine u/c ratio, and numerous other factors must be taken into account. The development of these procedures on the Sandia test facility has greatly reduced the risk to industry in commercial development of the S-CO2 power cycle.


Sign in / Sign up

Export Citation Format

Share Document