Circumferential Flow Differences in the Double-Sided Centrifugal Compressor With Non-Balanced Inlets

Author(s):  
Ce Yang ◽  
Yixiong Liu ◽  
Wangxia Wu ◽  
Lei Jing ◽  
Benjiang Wang ◽  
...  

A double-sided centrifugal compressor consists of two impellers whose inlets are non-balanced, with one side of the impeller connected to the straight duct, and the other connected to the bending duct. This leads to the differences in the inlet conditions of the double-sided impeller, resulting in the differences in the flow structures of the rear impeller along the circumferential direction. In this work, aiming at analyzing the flow structures of the rear impeller, diffuser and volute internal in three flow rate conditions, the internal flow field of the double-sided centrifugal compressor was calculated in a numerical method. It is found that the inlet bending duct results in significant inlet axial velocity difference of the rear impeller along circumferential direction. The axial velocity differences at high span positions become more obvious with the increase of the flow rate. Moreover, the jet-wake structures among the blade passage outlets are also various. At the high static pressure zones of the volute, corresponding blade passage wake regions increase and their sizes are also influenced by the inlet distortion. The circumferential distributions of the static pressure in the diffuser agree well with that in the volute. In the diffuser, the non-uniform degrees of the static pressure distributions are roughly the same at different radius positions and are weakening with the decrease of the flow rate.

Author(s):  
Ce Yang ◽  
Wenli Wang ◽  
Hanzhi Zhang ◽  
Yanzhao Li ◽  
Ding Tong ◽  
...  

Abstract In a centrifugal compressor with a volute, the internal flow field is circumferentially nonuniform owing to the asymmetric structure of the volute. Currently, the mechanisms by which the volute influences the stall inception circumferential position and the stall process in a transonic centrifugal compressor are not clear. In this study, the stall process in the centrifugal compressor with a volute is investigated under transonic inlet conditions. Obtained by experimental and simulation results, the static pressure distributions around the casing wall are compared with each other. Thereafter, an unsteady simulation is conducted on the stall process under transonic inlet conditions. By analyzing the stall cell evolution pattern at the impeller inlet, the stall process can be divided into three stages: stall onset, stall development, and stall maturation. The spike-type stall inceptions occur twice at the tip in the circumferential 135° position of the impeller inlet. This circumferential position is also the affected position of the high static pressure region induced by the volute tongue. Because of the circumferentially nonuniform flow field, there is a stall cell decay zone and a stall cell formation/growth zone at the impeller inlet. For the compressor under study, the approximate circumferential range of 135° to 270° is the decay zone, and the circumferential range of 270° to 360° is the formation/growth zone. The stall inception cannot occur in the decay zone. However, the stall cells can pass through the decay zone when the stall cell size is large enough. The first stall inception cannot propagate circumferentially, while the second one can. The propagation speed of stall cells in the circumferential direction is at approximately 70% of the rotational speed of impeller.


Author(s):  
Xiaojian Li ◽  
Yijia Zhao ◽  
Zhengxian Liu ◽  
Ming Zhao

To understand the flow dynamic characteristics of a centrifugal compressor, the dynamic mode decomposition (DMD) method is introduced to decompose the complex three-dimensional flow field. Three operating conditions, peak efficiency (OP1), peak pressure ratio (OP2), and small mass flow rate (near stall, OP3) conditions, are analyzed. First, the physical interpretations of main dynamic modes at OP1 are identified. As a result, the dynamic structures captured by DMD method are closely associated with the flow characteristics. In detail, the BPF/2BPF (blade passing frequency) corresponds to the impeller–diffuser interaction, the rotor frequency (RF) represents the tip leakage flow (TLF) from leading edge, and the 4RF is related to the interaction among the downstream TLF, the secondary flow, and the wake vortex. Then, the evolution of the dynamic structures is discussed when the compressor mass flow rate consistently declines. In the impeller, the tip leakage vortex near leading edge gradually breaks down due to the high backpressure, resulting in multi-frequency vortices. The broken vortices further propagate downstream along streamwise direction and then interact with the flow structures of 4RF. As a result, the 8RF mode can be observed in the whole impeller, this mode is transformed from upstream RF and 4RF modes, respectively. On the other hand, the broken vortices show broadband peak spectrum, which is correlated to the stall inception. Therefore, the sudden boost of energy ratio of 14RF mode could be regarded as a type of earlier signal for compressor instability. In the diffuser, the flow structures are affected by the perturbation from the impeller. However, the flow in diffuser is more stable than that in impeller at OP1–OP3, since the leading modes are stable patterns of BPF/2BPF.


Author(s):  
Mingyang Yang ◽  
Ricardo Martinez-Botas ◽  
Yangjun Zhang ◽  
Xinqian Zheng ◽  
Takahiro Bamba ◽  
...  

Large feasible operation range is a challenge for high pressure ratio centrifugal compressor of turbocharger in vehicle engine. Self-Recycling-Casing-Treatment (SRCT) is a widely used flow control method to enlarge the range for this kind of compressor. This paper investigates the influence of symmetrical/asymmetrical SRCT (ASRCT) on the stability of a high pressure ratio centrifugal compressor by experimental testing and numerical simulation. Firstly, the performance of the compressor with/without SRCT is tested is measured investigate the influence of flow distortion on the stability of compressor as well as the numerical method validation. Then detailed flow field investigation is conducted by experimental measurement and the numerical method to unveil the reasons for stability enhancement by symmetrical/asymmetrical SRCT. Results show that static pressure distortion at impeller outlet caused by the volute can make passages be confronted with flow distortion less stable than others because of their larger positive slope of T-S pressure ratio performance at small flow rate. SRCT can depress the flow distortion and reduce the slope by non-uniform recycling flow rate at impeller inlet. Moreover, ASRCT can redistribute the recycling flow in circumferential direction according to the asymmetric geometries. When the largest recycling flow rate is imposed on the passage near the distorted static pressure, the slope will be the most effectively reduced. Therefore, the stability is effectively enhanced by the optimized recycling flow device.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3657
Author(s):  
Weidong Cao ◽  
Jiayu Mao ◽  
Wei Li

In order to understand the pressure fluctuation characteristics of a semi-open cutting pump, the three-dimensional unsteady flow fields were calculated. External and internal flow characteristics of four schemes with different relative angles between the rotary cutter and the impeller were studied. The pressure fluctuations in the lower plate, the upper plate, the clearance between the rotary cutter and the fixed cutter, the first section in volute and nearby parts of the tongue were all analyzed, which are all the places that pressure distributions are greatly affected by the static and dynamic interaction, and at the same time, the force on the impeller was also analyzed. The results show that the fluctuations at different positions change periodically; the main frequency is blade frequency. The amplitude of pressure fluctuation decreases from near the rotating part to far away, from near the tongue to far from the tongue. Due to the influence of both impeller and rotary cutter, the pressure fluctuation on the lower plate is the largest. The pressure fluctuation is affected by flow rate, the larger the flow rate, the greater the pressure fluctuation. The radial and axial forces of the impeller change periodically with time, and the number of wave peaks and wave valleys is the same as the number of blades.


Author(s):  
Yumeno Inaba ◽  
Kento Sakai ◽  
Kazuyoshi Miyagawa ◽  
Masamichi Iino ◽  
Takeshi Sano

Abstract The disk friction loss is remarkably large in low specific speed centrifugal pumps, and an effective reduction method has not been established. Therefore, to develop such a method, the loss mechanism was investigated. To grasp the internal flow structure in the narrow clearance, both experimental and computational approaches were used. An experimental apparatus that imitates clearance between a rotating impeller disk and a stationary casing disk was used, and the static pressure distribution in the radial direction was measured. The internal flow where the disk friction loss occurs was investigated. In the case of outward flow, the static pressure decreased because the influence of the centrifugal force lessened toward the outer diameter side of the disk, as the flow rate surged. For this reason, the pressure gradient became steep. According to the CFD analysis, there was a vortex in the cross-section of the clearance. This vortex encouraged flow recirculation and promoted the increased of the circumferential velocity in the potential core. When the flow rate grew, the vortex diminished. The circumferential velocity gradient and the shear stress intensified. As a result, the disk friction escalated. In the case of inward flow, the pressure gradient became steep as the flow rate increase. There was a vortex in the clearance, the size of which lessened when the flow rate surged. The disk friction had a minimum value at the flow rate was 6e-4 m3/s. This research clarified that the vortex in the clearance has a remarkable effect on reducing the disk friction.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Li ◽  
Xiaofan Zhao ◽  
Weiqiang Li ◽  
Weidong Shi ◽  
Leilei Ji ◽  
...  

Changing the blade outlet width is an important method to adjust the performance curves of centrifugal pumps. In this study, three impellers with different blade outlet widths in an engine cooling water pump (ECWP) were numerically simulated based on ANSYS-CFX software. Numerical calculation reliability was validated based on the comparison between simulation results and experimental datum. As the blade outlet width increases, from the performance curves, the investigated ECWP head increases gradually; and the best efficiency point (BEP) offsets to larger flow rate; and the high efficiency region (HER) is becoming larger; and the critical cavitation pressure of the investigated ECWP at BEP increases, which indicates that the cavitation performance at BEP became worse. Compared with the internal flow field, we find vortex appears mainly in the blade passage near the tongue and volute outlet, and the region of the low static pressure is located in the blade inlet suction surface, and impeller inlet and outlet are the regions of high turbulence kinetic energy. Meanwhile, at the same flow rate, with the increase of blade outlet width, the areas of vortex and low static pressure become obvious and bigger.


Author(s):  
Zhongqi Wang ◽  
Wanjin Han ◽  
Wenyuan Xu

In a low speed plane cascade tunnel, the outlet flow fields and the static pressure distributions on blade surfaces of the turbine rectangular stator cascades with a small aspect ratio (s=0.68) were measured in detail. The experimental results show that the blade curving can form the negative gradient of static pressure along the blade height in the lower region of the cascade and the positive one in the upper region. This can lead to the reduction of the intensity of the streamwise vortices and the aerodynamic loading on both sides of the blades and the endwalls. Therefore, the end crosswise secondary flow losses are decreased considerably. The use of the curvilinear leaned blades can not only improve the flow characteristics in the stator cascades, but also provide good inlet conditions for rotor cascades.


1999 ◽  
Vol 121 (1) ◽  
pp. 113-118 ◽  
Author(s):  
H. Tamaki ◽  
H. Nakao ◽  
M. Saito

The centrifugal compressor for a marine use turbocharger with its design pressure ratio of 3.2 was tested with a vaneless diffuser and various vaned diffusers. Vaned diffusers were chosen to cover impeller operating range as broad as possible. The analysis of the static pressure ratio in the impeller and the diffusing system, consisting of the diffuser and scroll, showed that there were four possible combinations of characteristics of impeller pressure ratio and diffusing system pressure ratio, The flow rate, QP, where the impeller achieved maximum static pressure ratio, was surge flow rate of the centrifugal compressor determined by the critical flow rate. In order to operate the compressor at a rate lower than QP, the diffusing system, whose pressure recovery factor was steep negative slope near QP, was needed. When the diffuser throat area was less than a certain value, the compressor efficiency deteriorated; however, the compressor stage pressure ratio was almost constant. In this study, by reducing the diffuser throat area, the compressor could be operated at a flow rate less than 40 percent of its design flow rate. Analysis of the pressure ratio in the impeller and diffusing systems at design and off-design speeds showed that the irregularities in surge line occurred when the component that controlled the negative slope on the compressor stage pressure ratio changed.


Author(s):  
Hideomi Harada ◽  
Masanori Goto

In order to experimentally determine the performance characteristics of low-solidity cascade diffusers, three kinds of diffusers, a vaneless diffuser, a single and a tandem low-solidity cascade diffuser were attached to a medium specific speed centrifugal compressor stage and tested on a closed-loop test stand. The three-dimensional incompressible viscous flow analysis method, which had recently been established in our laboratory, was used to calculate the internal flow conditions inside of these diffusers. Both the single and tandem low-solidity cascade diffusers performed better than the vaneless diffuser. In particular, the tandem low-solidity cascade diffuser showed an increase in static pressure recovery coefficient of greater than 15% at the design point, and an increase greater than 40% at the lower flow rate, as compared with the pressure recovery of a vaneless diffuser. The total-to-static overall compressor stage efficiency was improved by 4% to 10% from 100% to 70% flow rate by using the tandem diffuser. The measured blade to blade static pressure distribution inside the low-solidity cascade diffusers was compared with the numerical results obtained via 3D viscous incompressible flow analysis, and the authors found that the static pressure recovery was qualitatively well predicted by this flow analysis method.


1991 ◽  
Vol 113 (4) ◽  
pp. 660-669 ◽  
Author(s):  
H. D. Joslyn ◽  
J. J. Brasz ◽  
R. P. Dring

The ability to acquire blade loadings (surface pressure distributions) and surface flow visualization on an unshrouded centrifugal compressor impeller is demonstrated. Circumferential and streamwise static pressure distributions acquired on the stationary shroud are also presented. Data were acquired in a new facility designed for centrifugal compressor aerodynamic research. Blade loadings calculated with a blade-to-blade potential flow analysis are compared with the measured results. Surface flow visualization reveals some complex aspects of the flow on the surface of the impeller blading and hub.


Sign in / Sign up

Export Citation Format

Share Document