Virtual Gas Turbine: Pre-Processing and Numerical Simulations

Author(s):  
Feng Wang ◽  
Mauro Carnevale ◽  
Gan Lu ◽  
Luca di Mare ◽  
Davendu Kulkarni

The design process of a gas turbine engine involves interrelated multi-disciplinary and multi-fidelity designs of engine components. Traditional component-based design process is not always able to capture the complicated physical phenomenon caused by component interactions. It is likely that such interactions are not resolved until hardware is built and tests are conducted. Component interactions can be captured by assembling all these components into one computational model. Nowadays, numerical solvers are fairly easy to use and the most time-consuming (in terms of man-hours) step for large scale gas turbine simulations is the preprocessing process. In this paper, a method is proposed to reduce its time-cost and make large scale gas turbine numerical simulations affordable in the design process. The method is based on a novel featured-based in-house geometry database. It allows the meshing modules to not only extract geometrical shapes of a computational model and additional attributes attached to the geometrical shapes as well, such as rotational frames, boundary types, materials, etc. This will considerably reduce the time-cost in setting up the boundary conditions for the models in a correct and consistent manner. Furthermore, since all the geometrical modules access to the same geometrical database, geometrical consistency is satisfied implicitly. This will remove the time-consuming process of checking possible mismatching in geometrical models when many components are present. The capability of the proposed method is demonstrated by meshing the whole gas path of a modern three-shaft engine and the Reynold’s Averaged Navier-Stokes (RANS) simulation of the whole gas path.

2021 ◽  
Author(s):  
Davendu Y. Kulkarni ◽  
Luca di Mare

Abstract The design and analysis of the secondary air system (SAS) of gas turbine engine is a complex and time-consuming process because of its complicated geometry topology. The conventional SAS design-analysis model generation process is quite tedious, time consuming. It is still heavily dependent on human expertise and thus incurs high time-cost. This paper presents an automated, whole-engine SAS flow network model generation methodology. During the SAS preprocessing step, the method accesses a pre-built whole-engine geometry model created using a novel, in-house, feature-based geometry modelling environment. It then transforms the engine geometry features into the features suitable for SAS flow network analysis. The proposed method not only extracts the geometric information from the computational geometry but also retrieves additional non-geometric attributes such as, rotational frames, boundary types, materials and boundary conditions etc. Apart from ensuring geometric consistency, this methodology also establishes a bi-directional information exchange protocol between engine geometry model and SAS flow network model, which enables making engine geometry modifications based on SAS analysis results. The application of this feature mapping methodology is demonstrated by generating the secondary air system (SAS) flow network model of a modern three-shaft gas turbine engine. This capability is particularly useful for the integration of geometry modeler with the simulation framework. The present SAS model is generated within a few minutes, without any human intervention, which significantly reduces the SAS design-analysis time-cost. The proposed method allows performing a large number of whole-engine SAS simulations, design optimisations and fast re-design activities.


2002 ◽  
Vol 124 (3) ◽  
pp. 508-516 ◽  
Author(s):  
M. D. Barringer ◽  
O. T. Richard ◽  
J. P. Walter ◽  
S. M. Stitzel ◽  
K. A. Thole

The flow field exiting the combustor in a gas turbine engine is quite complex considering the presence of large dilution jets and complicated cooling schemes for the combustor liner. For the most part, however, there has been a disconnect between the combustor and turbine when simulating the flow field that enters the nozzle guide vanes. To determine the effects of a representative combustor flow field on the nozzle guide vane, a large-scale wind tunnel section has been developed to simulate the flow conditions of a prototypical combustor. This paper presents experimental results of a combustor simulation with no downstream turbine section as a baseline for comparison to the case with a turbine vane. Results indicate that the dilution jets generate turbulence levels of 15–18% at the exit of the combustor with a length scale that closely matches that of the dilution hole diameter. The total pressure exiting the combustor in the near-wall region neither resembles a turbulent boundary layer nor is it completely uniform putting both of these commonly made assumptions into question.


Author(s):  
C. M. Spadaccini ◽  
J. Lee ◽  
S. Lukachko ◽  
I. A. Waitz ◽  
A. Mehra ◽  
...  

As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this paper presents the design, fabrication, experimental testing, and modeling of the combustion system. Two radial inflow combustor designs were examined; a single-zone arrangement and a primary and dilution-zone configuration. Both combustors were micro-machined from silicon using Deep Reactive Ion Etching (DRIE) and aligned fusion wafer bonding. Hydrogen-air and hydrocarbon-air combustion was stabilized in both devices, each with chamber volumes of 191 mm3. Exit gas temperatures as high as 1800 K and power densities in excess of 1100 MW/m3 were achieved. For the same equivalence ratio and overall efficiency, the dual-zone combustor reached power densities nearly double that of the single-zone design. Because diagnostics in micro-scale devices are often highly intrusive, numerical simulations were used to gain insight into the fluid and combustion physics. Unlike large-scale combustors, the performance of the micro-combustors was found to be more severely limited by heat transfer and chemical kinetics constraints. Important design trades are identified and recommendations for micro-combustor design are presented.


Author(s):  
E. Haghighi ◽  
B. Borzou ◽  
Amir R. Ghahremani ◽  
M. Behshad Shafii

The use of advanced cycles to take advantage of the gas turbine’s thermodynamic characteristics has received increasing attention in recent years. These cycles have been developed for large scale power generation. Due to the powerful abilities of bio-inspired computing techniques such as Genetic Algorithm in locating the optimal (or near optimal) solutions to a given optimization problem, they are widely utilized for determining the parameters of different engineering systems in order to meet the specified performance objectives for a given problem. In order to illustrate the performance of one of these techniques, development and application of it for an engineering problem is presented. In this paper a regenerative gas turbine cycle, with isothermal heat addition has been analyzed. The optimization of system has been carried out numerically using the Genetic Algorithm method. Results show that the regenerative gas turbine engine, with isothermal heat addition, designed according to the optimum parameters condition gives the best performance and exhibits highest cycle efficiencies.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Aurélien Marsan ◽  
Stéphane Moreau

Large-scale radial blowers are widely used in factories and are one of the main sources of noise. The present study aims at identifying the noise generation mechanisms in such a radial blower in order to suggest simple modifications that could be made in order to reduce the noise. The flow in a representative large-scale radial blower is investigated thanks to unsteady Reynolds-averaged Navier–Stokes (URANS) numerical simulations. The radiated noise is calculated, thanks to an in-house propagation code based on the Ffowcs Williams Hawkings' (FWH) analogy, SherFWH. The results highlight the main noise generation mechanisms, in particular the interaction between the rotating blades and the tongue, and the interaction between the rotating blades and the trapdoors located on the volute sidewall. Some modifications of the geometry are suggested.


2003 ◽  
Vol 125 (3) ◽  
pp. 709-719 ◽  
Author(s):  
C. M. Spadaccini ◽  
A. Mehra ◽  
J. Lee ◽  
X. Zhang ◽  
S. Lukachko ◽  
...  

As part of an effort to develop a microscale gas turbine engine for power generation and micropropulsion applications, this paper presents the design, fabrication, experimental testing, and modeling of the combustion system. Two radial inflow combustor designs were examined; a single-zone arrangement and a primary and dilution-zone configuration. Both combustors were micromachined from silicon using deep reactive ion etching (DRIE) and aligned fusion wafer bonding. Hydrogen-air and hydrocarbon-air combustion were stabilized in both devices, each with chamber volumes of 191mm3. Exit gas temperatures as high as 1800 K and power densities in excess of 1100MW/m3 were achieved. For the same equivalence ratio and overall efficiency, the dual-zone combustor reached power densities nearly double that of the single-zone design. Because diagnostics in microscale devices are often highly intrusive, numerical simulations were used to gain insight into the fluid and combustion physics. Unlike large-scale combustors, the performance of the microcombustors was found to be more severely limited by heat transfer and chemical kinetics constraints. Important design trades are identified and recommendations for microcombustor design are presented.


Author(s):  
E. P. Petrov

An efficient method is proposed for the multiharmonic frequency domain analysis of the stability for nonlinear periodic forced vibrations in gas-turbine engine structures and turbomachines with friction, gaps and other types of nonlinear contact interfaces. The method allows using large-scale finite element models for structural components together with detailed description of nonlinear interactions at contact interfaces between these components. The highly accurate reduced models are applied in the assessment of stability of periodic regimes for large-scale model of gas-turbine structures. An approach is proposed for the highly-accurate calculation of motion of a structure after it is perturbed from the periodic nonlinear forced response. Efficiency of the developed approach is demonstrated on a set of test cases including simple models and large-scale realistic bladed disc models with different types of nonlinearities: friction, gaps and cubic nonlinear springs.


1995 ◽  
Author(s):  
Kenneth J. Hart ◽  
Alan B. Turner

Research has been conducted into the effects of component geometry and air bleed flow on the radial variation of static pressure and core tangential velocity in a rotor-stator cavity of the type often found behind the impeller of a gas turbine engine centrifugal compressor. A CFD code, validated by rig test data for a wide range of rotor-stator axial gaps and throughflows, has been used to generate pressure and velocity data for typical gas turbine operating conditions. This data has been arranged as a series of simple design curves which relate the rotational speed of the core of fluid between rotor and stator boundary layers, and hence the static pressure distribution, to primary cavity geometry, rotational Reynolds number and bleed throughflow with particular attention to radial inflowing bleeds. Details are provided on the use and limitations of these curves. Predictions using this method have been compared successfully with measured data from engine test and a compressor test rig, modified to facilitate variable quantity and direction of impeller rear face bleed flow, at typical gas turbine operational power conditions. Data generated by these curves can be used directly in the design process and to validate integral momentum methods which can provide relatively simple computation of rotor-stator cavity pressure and velocity distributions independently or within air system network programs. This approach is considered to be a cost and time effective addition to the analytical design process especially if validated CFD code, which can accommodate rotational flows consistently and accurately, is not available.


2019 ◽  
pp. 39-49
Author(s):  
Юрий Иванович Торба ◽  
Сергей Игоревич Планковский ◽  
Олег Валерьевич Трифонов ◽  
Евгений Владимирович Цегельник ◽  
Дмитрий Викторович Павленко

The aim of the work was the development and testing of methods for modeling the combustion process in the torch igniters of gas turbine engines. To achieve it, the finite element method was used. The main results of the work are the substantiation of the need to optimize the torch igniters of gas turbine engines. The practice of operating torch igniters of various designs has shown that the stability of their work depends on the parameters of gas turbine engines and external factors (air and fuel temperature, size of fuel droplets, fuel and air consumption, as well as its pressure). At the same time, the scaling of the geometry of the igniter design does not ensure its satisfactory work in the composition of the GTE with modified parameters. In this regard, an urgent task is to develop a combustion model in a flare igniter to optimize its design. A computational model of a torch igniter for a gas turbine engine of a serial gas-turbine engine in a software package for numerical three-dimensional thermodynamic simulation of AN-SYS FLUENT has been developed. To reduce the calculation time and the size of the finite element model, recommendations on the adaptation of the geometric model of the igniter for numerical modeling are proposed. The mod-els of flow turbulence and combustion, as well as initial and boundary conditions, are selected and substantiated. Verification of the calculation results obtained by comparison of numerical simulation with the data of tests on a specialized test bench was performed. It is shown that the developed computational model makes it possible to simulate the working process in the torch igniters of the GTE combustion chambers of the investigated design with a high degree of confidence. The scientific novelty of the work consists in substantiating the choice of the combustion model, the turbulence model, as well as the initial and boundary conditions that provide adequate results to the full-scale experiment on a special test bench. The developed method of modeling the combustion process in gas turbine torch igniters can be effectively used to optimize the design of igniters based on GTE operation conditions, as well as combustion initialization devices to expand the range of stable operation of the combustion chamber. 


Sign in / Sign up

Export Citation Format

Share Document