Computational Analysis of Compressor Blade Erosion in a Wet Compression System

Author(s):  
Palani Kumar Chidambaram ◽  
Tae Hoon Song ◽  
In Won Kim ◽  
Kwon Hee Lee ◽  
Heuy Dong Kim

In a gas turbine engine a wet compression system is installed to increase the net power output. However, this may erode compressor blades due to fine water droplets hitting the surface. In the present work, numerical investigations are carried out to study blade erosion by water droplets. The computational domain consists of a rotating blade jig on which four blades are mounted. This represents the simultaneous experiments being carried out. Sliding mesh method is used to incorporate rotary movement of the blades. Water is injected as spray using an impact-pin nozzle. Experimentally measured spray parameters like the flow rate, particle diameter, etc. are given as initial and boundary conditions in the simulations. Discrete Phase Model (DPM) is used to track the particles in the domain. Droplet parameters like average velocity, diameter and number of droplets hitting each cell on the blade surface are monitored. These parameters are then used to predict the rate of erosion on the surface. In this manuscript, the progresses in the prediction of blade erosion at various blade rotational speed (rpm) is reported.

Author(s):  
Yasmin Khakpour ◽  
Herek L. Clack

Particulate sampling in the flue gas at the Electrostatic Precipitator (ESP) outlet during injection of powdered activated carbons (PACs) has provided strong anecdotal evidence indicating that injected PACs can penetrate the ESP in significant concentrations. The low resistivity of PAC is consistent with poor collection efficiency in an ESP and lab-scale testing has revealed significantly different collection behavior of PAC in an ESP as compared to fly ash. The present study illustrates the use of a commercial CFD package — FLUENT — to investigate precipitation of powdered activated carbon (PAC) in the presence and absence of electric field. The computational domain is designed to represent a 2-D wire-plate ESP channel. The governing equations include those covering continuous phase transport, electric potential, air ionization, and particle charging. The particles are tracked using a Lagrangian Discrete Phase Model (DPM). In addition, a custom user-defined function (UDF) uses a deforming boundary condition and a prescribed critical particle velocity to account for particle deposition and dust-cake growth on the electrodes. The effect of Electrohydrodynamics (EHD) induced flow on the ESP collection efficiency under various flow and particle characteristics as well as different ESP configurations are illustrated.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012043
Author(s):  
Dan Mei ◽  
Xuemei Xu

Abstract The particle transport characteristics have a significant effect on the exposure of residents and pedestrians to traffic pollutants in the street canyon. Around the lakeside environment, the diffusion of water vapor affects the flow characteristics of the gas mixture, which has a considerable influence on particle transport in the street canyon. A computational domain containing water bodies from which droplets were emitted by evaporation, a lakeside avenue and architectural groups were constructed. The RNG k-ε turbulence model and discrete phase model were applied to study the velocity, pressure, density of the airflow and particle transport characteristics in the street canyon with the absolute humidity increase (AHI) of 0, 3.8×10-4 g/kg, 1.7×10-3 g/kg, 3.1×10-3 g/kg. The saturated vapor pressure on the surface of droplets was modified by the pressure correction equation, which can limit the evaporation rate of the droplets. The simulation results demonstrated that, the diffusion of vapor could reduce the airflow velocity and increase the air pressure and density. The particle concentration in the street canyon increased with the AHI. Most of the pathogens in the air are transmitted with the flow of particle, and the study has some guiding significance to prevent the transmission of viruses.


Author(s):  
Jobaidur R. Khan

Gas turbine inlet fog / overspray cooling is considered as a simple and effective method to increase power output. To help understand the water mist transport in the compressor flow passage, this study conducts a computational simulation of wet compression in a single rotor-stator compressor stage using the commercial code, Fluent. A sliding mesh scheme is used to simulate the stator-rotor interaction in a rotating frame. Previous researchers have modeled wet compression using DPM (Discrete Phase Model), where spray amount is very small (1–2%). Compressor washing is also becoming a new interest in the wet compression technology, which involves much higher amount of water (10–15%), which is not easy to handle with DPM. It can be done by multiphase model. To start compressor washing it is important to validate wet compression (1–2% spray) using DPM and the same using multiphase. This study takes the initial step to compare these two models, however multiphase model needs further development to perform an apple to apple comparison with DPM.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Tomasz Suchocki ◽  
Piotr Lampart ◽  
Piotr Klonowicz

Abstract The paper presents three-dimensional numerical simulations of combustion in the GTM-140 miniature turbine engine. The main aim of the work is to understand the processes occurring in the combustion chamber. The coupling of chemical kinetics, thermochemistry, transport of mass, energy and momentum, and fluid mechanics is a challenge for the engineers. The knowledge of these issues is essential to achieve a high performance product. The k- ϵ (RANS) Turbulence Model and Non-Premixed Model for the combustion was used. The particles of fluid droplets were described by the Discrete Phase Model.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chang Liu ◽  
Zuobing Chen ◽  
Weili Zhang ◽  
Chenggang Yang ◽  
Ya Mao ◽  
...  

The vertical roller mill is an important crushing and grading screening device widely used in many industries. Its classification efficiency and the pressure difference determine the entire producing capacity and power consumption, respectively, which makes them the two key indicators describing the mill performance. Based on the DPM (Discrete Phase Model) and continuous phase coupling model, the flow field characteristics in the vertical roller mill including the velocity and pressure fields and the discrete phase distributions had been analyzed. The influence of blade parameters like the shape, number, and rotating speed on the flow field and classification performance had also been comprehensively explored. The numerical simulations showed that there are vortices in many zones in the mill and the blades are of great significance to the mill performance. The blade IV not only results in high classification efficiency but also reduces effectively the pressure difference in the separator and also the whole machine. The conclusions of the flow field analysis and the blade effects on the classification efficiency and the pressure difference could guide designing and optimizing the equipment structure and the milling process, which is of great importance to obtain better overall performance of the vertical roller mill.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110080
Author(s):  
Zheqin Yu ◽  
Jianping Tan ◽  
Shuai Wang

Shear stress is often present in the blood flow within blood-contacting devices, which is the leading cause of hemolysis. However, the simulation method for blood flow with shear stress is still not perfect, especially the multiphase flow model and experimental verification. In this regard, this study proposes an enhanced discrete phase model for multiphase flow simulation of blood flow with shear stress. This simulation is based on the discrete phase model (DPM). According to the multiphase flow characteristics of blood, a virtual mass force model and a pressure gradient influence model are added to the calculation of cell particle motion. In the experimental verification, nozzle models were designed to simulate the flow with shear stress, varying the degree of shear stress through different nozzle sizes. The microscopic flow was measured by the Particle Image Velocimetry (PIV) experimental method. The comparison of the turbulence models and the verification of the simulation accuracy were carried out based on the experimental results. The result demonstrates that the simulation effect of the SST k- ω model is better than other standard turbulence models. Accuracy analysis proves that the simulation results are accurate and can capture the movement of cell-level particles in the flow with shear stress. The results of the research are conducive to obtaining accurate and comprehensive analysis results in the equipment development phase.


2021 ◽  
pp. 004051752110018
Author(s):  
Rui Hua Yang ◽  
Chuang He ◽  
Bo Pan ◽  
Hongxiu Zhong ◽  
Cundong Xu

The task of the fiber transport channel (FTC) is to transport the fibers from the carding roller to the rotor. Its geometric position in the spinning machine has a strong influence on the characteristics of the airflow field and the trajectory of the fiber motion in both the rotor and the FTC. In this paper, a three-dimensional pumping rotor spinning channel model was established using ANSYS-ICEM-CFD software with three different positions of the FTC (positions a–c). Further, the simulations of air distribution were performed using Fluent software. In addition, the discrete phase model was used to fit the fiber motion trajectory in the rotor. The simulation results showed that among the three types of FTC, position b is the optimal condition. The gradients of airflow velocity in the channel at position b were greater than those of the other two positions, which is conducive to straightening of the fiber.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 475
Author(s):  
Yin-An Wang ◽  
Xiao-Peng Xie ◽  
Xiao-Hui Lu

Spray painting robots equipped with air spray guns have been widely used in the painting industry. In view of the low efficiency of single-nozzle air spray guns when spraying large targets, a new double-nozzle air spray gun structure was designed in this paper based on the Coanda effect of double jets. Firstly, a 3-D physical model of the double-nozzle air spray gun was built in Solidworks, in which unstructured grids were generated for the computational domain by ICEM. Secondly, the spray painting process was numerically modeled with the help of the computational fluid dynamics (CFD) software ANSYS-Fluent 16.0. The two-phase spray flow was calculated by coupling a discrete phase model (DPM) and the Taylor analogy breakup (TAB) method. The TAB model was applied to predict the secondary break-up. The DPM model was applied to predict the droplet trajectories. The geometry of an air spray gun has a significant influence on the spray flow field characteristics. The influence of the air spray gun geometry on the interference spray flow field characteristics and coating film thickness distribution were investigated by changing the values of the distance between the centers of the two paint holes (L) and the angle between the axes of the two paint holes (θ). Numerical results show that the smaller L and θ are, the stronger the interference effect between the two jets, while the more concentrated the paint is in the central region of the target surface, the easier it is for overspray to occur. With increasing L and θ, the interference effect gradually decreased and the extension distance of the coating film along the x-axis gradually increased. However, if L and θ are too large, the interference effect will become too weak and the shape of the coating film will become a concave, with more paint on both side regions and less paint in the central region, which will cause an uneven coating film. From the simulation results, it can be concluded that a more uniform coating film can be obtained when L = 30 mm and θ = 10°. The effective coating width of the double-nozzle air spray gun was increased by 85.7% compared with the single-nozzle air spray gun, which improved the spraying efficiency.


Sign in / Sign up

Export Citation Format

Share Document