Influence of Leading Edge Tubercles in an Annular Compressor Cascade With Different Hub-Tip Ratios and Aspect Ratios

Author(s):  
Tan Zheng ◽  
Mingmin Zhu ◽  
Xiaoqing Qiang ◽  
Jinfang Teng ◽  
Jinzhang Feng

Humpback whale flippers’ scalloped tubercles on the leading edge are thought to enhance the whale’s underwater maneuverability. Inspired by the flippers, leading edge tubercles are applied in a low speed annular compressor cascade as a type of passive flow control techniques in this paper. A numerical study is performed to investigate the influence of tubercles on the aerodynamic losses and corner separation in the low speed cascades. Different low speed cascades based on a CDA airfoil profile are built with several hub-tip ratios and aspect ratios. Steady RANS simulations are carried out for these cascades with and without leading edge tubercles. The aerodynamic performance and corner separation features are subsequently investigated in these cascades. The influence of tubercles under the variation of hub-tip ratio and aspect ratio is understood and concluded from the comparison of the performance attained by different cascades. Flow visualizations at a post-stall incidence angle show that the interaction between the tubercle-induced streamwise vortices and corner separation vortices plays a crucial role in attenuating the corner separation and reducing losses. By combining the performance analysis and flow visualizations, this paper discusses the mechanism of leading edge tubercles in a low speed annular compressor cascade with different hub-tip ratios and aspect ratios.

Author(s):  
Amr Abdelrahman ◽  
Amr Emam ◽  
Ihab Adam ◽  
Hamdy Hassan ◽  
Shinichi Ookawara ◽  
...  

Abstract Through the last two decades, many studies have demonstrated the ability of leading-edge protrusions (tubercles), inspired from the pectoral flippers of the humpback whale, to be an effective passive flow control method for the stall phase of an airfoil in some cases depending on the geometrical features and the flow regime. Nevertheless, there is a little work associated with revealing tubercles performance for the lifting surfaces with a highly cambered cross-section, used in numerous applications. The present work aims to investigate the effect of implementing leading edge tubercles on the performance of an infinite span rectangular wing with the highly cambered S1223 foil at different flow regimes. Two sets; baseline one and a modified with tubercles have been studied at Re = 0.1 × 106, 0.3 × 106 and 1.5 × 106 using computational fluid dynamics with a validated model. The numerical results demonstrated that Tubercles have the ability to entirely alter the flow structure over the airfoil, confining the separation to troughs, hence, softening the stall characteristics. However, the tubercle modification expedites the presence of the stalled flow over the suction side, lowering the stall angle for the three mentioned Reynolds numbers. While, no considerable difference occurs in lift and drag before the stall.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamed Ghandi ◽  
Reza Aghaei Togh ◽  
Abolghasem Mesgarpoor Tousi

Purpose The blade profile and its geometrical features play an important role in the separation of the boundary layer on the blade. Modifying the blade geometry, which might lead to the delay or elimination of the flow separation, can be considered as a passive flow control methodology. This study aims to find a novel and inexpensive way to reduce loss with appropriate modifications on the leading edge of the turbine blade. Design/methodology/approach Three types of wave leading edges were designed with different wavelengths and amplitudes. The selected numbers for the wave characteristics were based on the best results of previous studies. Models with appropriate and independent meshing have been simulated and studied by a commercial software. The distribution of the loss at different planes and mid-plane velocity vectors were shown. The mass flow average of loss at different incidence angles was calculated for the reference blade and modified ones for the sake of comparison. Findings The results show that in all three types of modified blades compared to the reference blade, the elimination of flow separation is observed and therefore the reduction of loss at the critical incidence angle of I = –15°. As the amplitude of the wave increased, the amount of loss growing up, while the increase in wavelength caused the loss to decrease. Originality/value The results of the present numerical analysis were validated by the laboratory results of the reference blade. The experimental study of modified blades can be used to quantify numerical solutions.


Author(s):  
Jiabin Li ◽  
Lucheng Ji ◽  
Weilin Yi

Nowadays, the corner separation, occurring near the corner region formed by the suction surface of blade and end wall, has been an important limitation for the increasing of the aerodynamic loading in the compressor. The previous numerical studies indicate that the Blended Blade and End Wall (BBEW) technology is useful in delaying, or reducing, or even eliminating the corner separation. To further validate the concept, this paper presents combined experimental and numerical investigations on a BBEW cascade and its prototype. Firstly, the NACA65 linear compressor cascade with the turning angle 42 degrees was designed and tested in a low-speed wind tunnel. Then, the cascade with blended blade and end wall design was made and tested in the same wind tunnel. The experimental results show that the design of blended blade and end wall can improve the performance of the cascade when the incidence angle was positive or at the design point, and the total pressure loss coefficient was reduced by 7%–8%. The performance improvement mainly located from 10%–25% span heights. Secondly, based on the experimental data, the numerical study made by our internal code Turbo-CFD shows the difference of the simulation precision of the results, obtained from four different turbulence model after the mesh independence test. The four turbulence model is Spalart-Allmaras model, standard k-ε model, standard k-ω model, and shear stress transport k-ω model. For this case, the SST turbulence model has better performance compared with others. Thirdly, based on the results which were calculated with the turbulence model SST, the effect of the blended blade and end wall design was discussed. The numerical study shows that the design with the blended blade and end wall can have a good effect on the corner flow of the cascade. The strong three-dimensional corner separation, caused by the accumulation of the flow happening at the trail of the suction side was avoided, and the flow losses of the prototype cascade were reduced. Above all, the experiment shows that the design with blended blade and end wall can improve the performance of the cascade. Compared with the experiment data, the SST turbulence model shows the best results of the flow field. Based on the numerical results, the details of the flow field and the effect of the blended blade and end wall design on the corner separation are discussed and analyzed.


Author(s):  
Bo Wang ◽  
Yanhui Wu

Corner separation contributes greatly to the loss and the passage blockage in a compressor stage. In order to mitigate the corner separation and improve the aerodynamic performance of compressors, a novel passive flow control method, an off-surface micro-blade installed upstream of the separation onset location, was proposed. A numerical investigation has was performed in an annular compressor cascade to assess the control effectiveness of the micro-blade. The results show that the location of the micro-blade affects the control effect significantly. The application of the well-designed micro-blade enhances the diffusion capacity considerably under the inflow incidence from −2° to +10°, accompanied by a slight loss reduction at some particular incidences. Detailed analysis of the predicted flow field was carried out to understand the underlying mechanism. It indicates that a “jet” forms upstream of the separation onset location with the application of the micro-blade. The formation of the jet reduces the thickness of boundary layer on the suction surface and builds a “jet barrier” near the endwall to hinder the accumulation of the low momentum fluid. The influence of the incidence was also investigated. It is concluded that the incidence increase has both positive and negative influences on the control effect of the micro-blade. As a result, the performance of the micro-blade is sensitive to the variation of inlet incidence.


Author(s):  
Tan Zheng ◽  
Xiaoqing Qiang ◽  
Jinfang Teng ◽  
Jinzhang Feng

Humpback whales possess bumpy tubercles on the leading edge of their flippers. Due to these leading edge tubercles, the whales are able to perform complex underwater maneuvers agilely. Inspired by the flippers, this paper applies sinusoidal-like tubercles to the leading edge of the blade in an annular compressor cascade, and presents a numerical investigation to explore the effects of tubercles with the aim of controlling the corner separation and reducing losses. A preliminary study by steady 3D RANS simulations is performed. The aerodynamic performance and the behavior of the corner separation are investigated in the baseline compressor cascade. Subsequently, cascades with leading edge tubercles are numerically simulated. A crucial geometry parameter of the tubercles, wavelength, is varied to obtain different configurations. The influence of the parameter is concluded from the comparison of the performance attained by these configurations. Also, several configurations, which are typical in loss characteristics, are selected for further DES simulations so as to obtain more flow details, especially at the separation region. Flow visualizations show that leading edge tubercles could induce the formation of counter-rotating streamwise vortices. The interaction between the streamwise vortices and corner separation is emphatically investigated. By analysis of all the results obtained, this paper tries to figure out the mechanism of leading edge tubercles in loss reduction and separation delay in an annular compressor cascade.


Author(s):  
Wei Ma ◽  
Feng Gao ◽  
Xavier Ottavy ◽  
Lipeng Lu ◽  
A. J. Wang

Recently bimodal phenomenon in corner separation has been found by Ma et al. (Experiments in Fluids, 2013, doi:10.1007/s00348-013-1546-y). Through detailed and accurate experimental results of the velocity flow field in a linear compressor cascade, they discovered two aperiodic modes exist in the corner separation of the compressor cascade. This phenomenon reflects the flow in corner separation is high intermittent, and large-scale coherent structures corresponding to two modes exist in the flow field of corner separation. However the generation mechanism of the bimodal phenomenon in corner separation is still unclear and thus needs to be studied further. In order to obtain instantaneous flow field with different unsteadiness and thus to analyse the mechanisms of bimodal phenomenon in corner separation, in this paper detached-eddy simulation (DES) is used to simulate the flow field in the linear compressor cascade where bimodal phenomenon has been found in previous experiment. DES in this paper successfully captures the bimodal phenomenon in the linear compressor cascade found in experiment, including the locations of bimodal points and the development of bimodal points along a line that normal to the blade suction side. We infer that the bimodal phenomenon in the corner separation is induced by the strong interaction between the following two facts. The first is the unsteady upstream flow nearby the leading edge whose angle and magnitude fluctuate simultaneously and significantly. The second is the high unsteady separation in the corner region.


Author(s):  
J. Sans ◽  
M. Resmini ◽  
J.-F. Brouckaert ◽  
S. Hiernaux

Solidity in compressors is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. This parameter is simply the inverse of the pitch-to-chord ratio generally used in turbines. Solidity must be selected at the earliest design phase, i.e. at the level of the meridional design and represents a crucial step in the whole design process. Most of the existing studies on this topic rely on low-speed compressor cascade correlations from Carter or Lieblein. The aim of this work is to update those correlations for state-of-the-art controlled diffusion blades, and extend their application to high Mach number flow regimes more typical of modern compressors. Another objective is also to improve the physical understanding of the solidity effect on compressor performance and stability. A numerical investigation has been performed using the commercial software FINE/Turbo. Two different blade profiles were selected and investigated in the compressible flow regime as an extension to the low-speed data on which the correlations are based. The first cascade uses a standard double circular arc profile, extensively referenced in the literature, while the second configuration uses a state-of-the-art CDB, representative of low pressure compressor stator mid-span profile. Both profiles have been designed with the same inlet and outlet metal angles and the same maximum thickness but the camber and thickness distributions, the stagger angle and the leading edge geometry of the CDB have been optimized. The determination of minimum loss, optimum incidence and deviation is addressed and compared with existing correlations for both configurations and various Mach numbers that have been selected in order to match typical booster stall and choke operating conditions. The emphasis is set on the minimum loss performance at mid-span. The impact of the solidity on the operating range and the stability of the cascade are also studied.


Author(s):  
Daniel R. Carroll ◽  
Paul I. King ◽  
James L. Rutledge

A water channel study was conducted on a cylindrical leading edge model of a film-cooled turbine blade to assess the effects of surface modifications on film spreading. A single radial coolant hole located 21.5° from the stagnation line, angled 20° to the surface and 90° to the flow direction supplied dyed coolant flow. Surface modifications included a variety of dimples upstream and downstream of the coolant hole and transverse trenches milled coincident with the coolant hole. Compared to the unmodified surface, a single row of small cylindrical or spherical dimples upstream of the coolant hole steadies the jet at blowing ratios up to M = 0.75. Medium and large spherical dimples downstream of the coolant hole have a similar effect, but none of the dimple geometries studied affect the coolant jet above M = 0.75. A single-depth, square-edged transverse trench spreads the coolant spanwise, increasing the coverage of a single coolant hole more than two times. This trench suffers from coolant blow-out above M = 0.50, but a deeper, tapered-depth trench entrains and spreads the coolant very effectively at blowing ratios above M = 0.50. The tapered trench prevents jet liftoff and is the only geometry studied that holds the coolant closer to the surface than the unmodified coolant hole.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Yangwei Liu ◽  
Yumeng Tang ◽  
Ashley D. Scillitoe ◽  
Paul G. Tucker

Abstract Three-dimensional corner separation significantly affects compressor performance, but turbulence models struggle to predict it accurately. This paper assesses the capability of the original shear stress transport (SST) turbulence model to predict the corner separation in a linear highly loaded prescribed velocity distribution (PVD) compressor cascade. Modifications for streamline curvature, Menter’s production limiter, and the Kato-Launder production term are examined. Comparisons with experimental data show that the original SST model and the SST model with different modifications can predict the corner flow well at an incidence angle of −7 deg, where the corner separation is small. However, all the models overpredict the extent of the flow separation when the corner separation is larger, at an incidence angle of 0 deg. The SST model is then modified using the helicity to take account of the energy backscatter, which previous studies have shown to be important in the corner separation regions of compressors. A Reynolds stress model (RSM) is also used for comparison. By comparing the numerical results with experiments and RSM results, it can be concluded that sensitizing the SST model to helicity can greatly improve the predictive accuracy for simulating the corner separation flow. The accuracy is quite competitive with the RSM, whereas in terms of computational cost and robustness it is superior to the RSM.


Author(s):  
Tan Zheng ◽  
Xiaoqing Qiang ◽  
Jinfang Teng ◽  
Jinzhang Feng

Abstract Humpback whales possess bumpy tubercles on the leading edge of their flippers. Due to these leading edge tubercles, whales are able to produce high degree of maneuverability. Inspired by the flippers, this paper applies sinusoidal-like tubercles to the leading edge of blades in an annular compressor cascade, and presents a numerical investigation to explore the effects of tubercles with the aim of controlling the corner separation and reducing losses. Steady 3D RANS simulations are performed to investigate the aerodynamic performance and behavior of the corner separation in compressor cascades with and without leading edge tubercles. A crucial geometry parameter of the tubercles, wavelength, is varied to obtain different configurations. Results show that a smaller wavelength (more wave number) corresponds to a larger loss reduction and the maximum loss reduction reaches to 46.0%. Also, it is found that leading edge tubercles result in a stall delay and the maximum stall angle improvement reaches to 28.1%. Flow visualizations show that leading edge tubercles could induce the formation of counter-rotating streamwise vortices. The interaction between the streamwise vortices and corner separation is thought to be the primary flow mechanism generated by leading edge tubercles in an annular compressor cascade.


Sign in / Sign up

Export Citation Format

Share Document