Numerical Analysis of Flutter in Variable Geometry Compressors

Author(s):  
Kentaro Suzuki ◽  
Fanzhou Zhao ◽  
Mehdi Vahdati

Abstract Aeroelastic behaviour of a transonic rotor in a newly designed 1.5 stage compressor with variable geometry is studied numerically in this paper. The stage is intended to be the front part of a one-shafted large frame industrial gas turbine (IGT) compressor. The compressor was designed using open-source software MULTALL and numerical computations were performed using the three-dimensional aeroelasticity code AU3d, which has been tested and validated for many aeroelastic test cases over the past 25 years. Flutter analysis for the 1F mode was performed at various design and off-design operating conditions which are typically experienced in IGT (varied inlet temperature and inlet guide vane angle). Although in all the cases the rotor remained stable, clear trends in aerodynamic damping were observed, which can be explained by shock position. In the last phase, the effects of increased tip gap size on the flutter stability were studied. The increase in tip clearance did not result in flutter; unsteady computations without blade motion showed a tip rotating instability with 11 cells travelling at 84% of the shaft speed in the stationary frame. Due to the frequency proximity between the rotating instability and blade natural vibration mode, large amplitude displacement driven by lock-in was observed in the fluid-structure coupled simulation. It was concluded that this type of aeroelastic instability which can be mistaken for flutter is the main threat for this IGT compressor.

Author(s):  
Cleverson Bringhenti ◽  
Jesuino Takachi Tomita ◽  
Joa˜o Roberto Barbosa

This work presents the performance study of a 1 MW gas turbine including the effects of blade cooling and compressor variable geometry. The axial flow compressor, with Variable Inlet Guide Vane (VIGV), was designed for this application and its performance maps synthesized using own high technological contents computer programs. The performance study was performed using a specially developed computer program, which is able to numerically simulate gas turbine engines performance with high confidence, in all possible operating conditions. The effects of turbine blades cooling were calculated for different turbine inlet temperatures (TIT) and the influence of the amount of compressor-bled cooling air was studied, aiming at efficiency maximization, for a specified blade life and cooling technology. Details of compressor maps generation, cycle analysis and blade cooling are discussed.


2021 ◽  
Author(s):  
Stefan D. Cich ◽  
J. Jeffrey Moore ◽  
Chris Kulhanek ◽  
Meera Day Towler ◽  
Jason Mortzheim

Abstract An enabling technology for a successful deployment of the sCO2 close-loop recompression Brayton cycle is the development of a compressor that can maintain high efficiency for a wide range of inlet conditions due to large variation in properties of CO2 operating near its dome. One solution is to develop an internal actuated variable Inlet Guide Vane (IGV) system that can maintain high efficiency in the main and re-compressor with varying inlet temperature. A compressor for this system has recently been manufactured and tested at various operating conditions to determine its compression efficiency. This compressor was developed with funding from the US DOE Apollo program and industry partners. This paper will focus on the design and testing of the main compressor operating near the CO2 dome. It will look at design challenges that went into some of the decisions for rotor and case construction and how that can affect the mechanical and aerodynamic performance of the compressor. This paper will also go into results from testing at the various operating conditions and how the change in density of CO2 affected rotordynamics and overall performance of the machine. Results will be compared to expected performance and how design changes were implanted to properly counter challenges during testing.


Author(s):  
C. Klein ◽  
F. Wolters ◽  
S. Reitenbach ◽  
D. Schönweitz

For an efficient detection of single or multiple component damages, the knowledge of their impact on the overall engine performance is crucial. This knowledge can be either built up on measurement data, which is hardly available to non-manufacturers or –maintenance companies, or simulative approaches such as high fidelity component simulation combined with an overall cycle analysis. Due to a high degree of complexity and computational effort, overall system simulations of jet engines are typically performed as 0-dimensional thermodynamic performance analysis, based on scaled generic component maps. The approach of multi-fidelity simulation, allows the replacement of single components within the thermodynamic cycle model by higher-order simulations. Hence, the component behavior becomes directly linked to the actual hardware state of the component model. Hereby the assessment of component deteriorations in an overall system context is enabled and the resulting impact on the overall system can be quantified. The purpose of this study is to demonstrate the capabilities of multi fidelity simulation in the context of engine condition monitoring. For this purpose, a 0D-performance model of the IAE-V2527 engine is combined with a CFD model of the appropriate fan component. The CFD model comprises the rotor as well as the outlet guide vane of the bypass and the inlet guide vane of the core section. As an exemplarily component deterioration, the fan blade tip clearance is increased in multiple steps and the impact on the overall engine performance is assessed for typical engine operating conditions. The harmonization between both simulation levels is achieved by means of an improved map scaling approach using an optimization strategy leading to practicable simulation times.


Author(s):  
Yoojun Hwang ◽  
Shin-Hyoung Kang ◽  
Sungryoung Lee

Numerical calculations were done to investigate unsteady flows through the tip clearance in an axial compressor. The first stage of a low speed research axial compressor with an inlet guide vane was examined after it had been confirmed that the numerically calculated performance data was in good agreement with the experimentally measured performance data. Special attention was paid to the flow during the operation of the compressor when the flow rate was low to study the flow behavior near stall. The estimated performance and the flow pattern of the compressor were found to be related to the unsteadiness of the tip leakage flow altered by the potential effect from the downstream stator row blades. It was shown that the unsteady flow calculations are necessary to predict the performance of an axial compressor, in particular, for low flow rates. On the other hand, rotating instability vortices developed due to unsteady tip leakage flow as the flow rate decreased. It was found that the flow structures corresponding to the rotating instability were merging as the flow rate decreased and the speed of the rotating instability varied with the operating conditions. Consequently, this leads to a non-synchronous vibration frequency.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 172
Author(s):  
Hengtao Shi

Recently, a new type of low-loss variable inlet guide vane (VIGV) was proposed for improving a compressor’s performance under off-design conditions. To provide more information for applications, this work investigated the effect of the Reynolds number and clearance flow on the aerodynamic characteristics of this new type of VIGV. The performance and flow field of two representative airfoils with different chord Reynolds numbers were studied with the widely used commercial software ANSYS CFX after validation was completed. Calculations indicate that, with the decrease in the Reynolds number Rec, the airfoil loss coefficient ω and deviation δ first increase slightly and then entered a high growth rate in a low range of Rec. Afterwards, a detailed boundary-layer analysis was conducted to reveal the flow mechanism for the airfoil performance degradation with a low Reynolds number. For the design point, it is the appearance and extension of the separation region on the rear portion; for the maximum incidence point, it is the increase in the length and height of the separation region on the former portion. The three-dimensional VIGV research confirms the Reynolds number effect on airfoils. Furthermore, the clearance leakage flow forms a strong stream-wise vortex by injection into the mainflow, resulting in a high total-pressure loss and under-turning in the endwall region, which shows the potential benefits of seal treatment.


Author(s):  
Milan Banjac ◽  
Milan V. Petrovic ◽  
Alexander Wiedermann

This paper describes a new universal algebraic model for the estimation of flow deflection and losses in axial compressor inlet guide vane devices. The model deals with nominal flow and far-off-design operating conditions in connection with large stagger angle adjustments. The first part of the model considers deflection and losses in 2D cascades, taking into account the main cascade geometry parameters and operating conditions, such as Mach number and stagger adjustment. The second part of the model deals with additional deviation and losses due to secondary flow caused by the endwall viscous effects and by the trailing vortices. The model is developed for NACA65 airfoils, NACA63-A4K6 airfoils and airfoils having an NACA65 thickness distribution on a circular-arc camber line. It is suitable for application in 1D or 2D through-flow calculations for design and analysis cases. The development of the method is based on systematic CFD flow calculations for various cascade geometries and operating parameters. The comparison of correlation results with experimental data for several test cases shows good agreement.


Author(s):  
Benjamin Pardowitz ◽  
Ulf Tapken ◽  
Lars Neuhaus ◽  
Lars Enghardt

Rotating instability (RI) occurs at off-design conditions in axial compressors, predominantly in rotor configurations with large tip clearances. Characteristic spectral signatures with side-by-side peaks below the blade passing frequency (BPF) are typically referred to RI located in the clearance region next to the leading edge (LE). Each peak can be assigned to a dominant circumferential mode. RI is the source of the clearance noise (CN) and an indicator for critical operating conditions. Earlier studies at an annular cascade pointed out that RI modes of different circumferential orders occur stochastically distributed in time and independently from each other, which is contradictory to existing explanations of RI. Purpose of the present study is to verify this generally with regard to axial rotor configurations. Experiments were conducted on a laboratory axial fan stage mainly using unsteady pressure measurements in a sensor ring near the rotor LE. A mode decomposition based on cross spectral matrices was used to analyze the spectral and modal RI patterns upstream of the rotor. Additionally, a time-resolved analysis based on a spatial discrete-Fourier-transform (DFT) was applied to clarify the temporal characteristics of the RI modes and their potential interrelations. The results and a comparison with the previous findings on the annular cascade corroborate a new hypothesis about the basic RI mechanism. This hypothesis implies that instability waves of different wavelengths are generated stochastically in a shear layer resulting from a backflow in the tip clearance region.


Author(s):  
Mohammad R. Saadatmand

The aerodynamic design process leading to the production configuration of a 14 stage, 16:1 pressure ratio compressor for the Taurus 70 gas turbine is described. The performance of the compressor is measured and compared to the design intent. Overall compressor performance at the design condition was found to be close to design intent. Flow profiles measured by vane mounted instrumentation are presented and discussed. The flow through the first rotor blade has been modeled at different operating conditions using the Dawes (1987) three-dimensional viscous code and the results are compared to the experimental data. The CFD prediction agreed well with the experimental data across the blade span, including the pile up of the boundary layer on the corner of the hub and the suction surface. The rotor blade was also analyzed with different grid refinement and the results were compared with the test data.


Author(s):  
Ashlie B. Flegel

Abstract A Honeywell Uncertified Research Engine was exposed to various ice crystal conditions in the NASA Glenn Propulsion Systems Laboratory. Simulations using NASA’s 1D Icing Risk Analysis tool were used to determine potential inlet conditions that could lead to ice crystal accretion along the inlet of the core flowpath and into the high pressure compressor. These conditions were simulated in the facility to develop baseline conditions. Parameters were then varied to move or change accretion characteristics. Data were acquired at altitudes varying from 5 kft to 45 kft, at nominal ice particle Median Volumetric Diameters from 20 μm to 100 μm, and total water contents of 1 g/m3 to 12 g/m3. Engine and flight parameters such as fan speed, Mach number, and inlet temperature were also varied. The engine was instrumented with total temperature and pressure probes. Static pressure taps were installed at the leading edge of the fan stator, front frame hub, the shroud of the inlet guide vane, and first two rotors. Metal temperatures were acquired for the inlet guide vane and vane stators 1–2. In-situ measurements of the particle size distribution were acquired three meters upstream of the engine forward fan flange and one meter downstream of the fan in the bypass in order to study particle break-up behavior. Cameras were installed in the engine to capture ice accretions at the leading edge of the fan stator, splitter lip, and inlet guide vane. Additional measurements acquired but not discussed in this paper include: high speed pressure transducers installed at the trailing edge of the first stage rotor and light extinction probes used to acquire particle concentrations at the fan exit stator plane and at the inlet to the core and bypass. The goal of this study was to understand the key parameters of accretion, acquire particle break-up data aft of the fan, and generate a unique icing dataset for model and tool development. The work described in this paper focuses on the effect of particle break-up. It was found that there was significant particle break-up downstream of the fan in the bypass, especially with larger initial particle sizes. The metal temperatures on the inlet guide vanes and stators show a temperature increase with increasing particle size. Accretion behavior observed was very similar at the fan stator and splitter lip across all test cases. However at the inlet guide vanes, the accretion decreased with increasing particle size.


Author(s):  
Pritee Purohit ◽  
Shashikant T. Vagge

This chapter describes how for power generators like gas turbines and aero engines, the economic and environmental challenges are increasing day by day for producing electricity more efficiently. The efficiency of power generators can be increased by changing its operating conditions like inlet temperature and procedure. Currently, the inlet temperature to the industrial gas turbine is reaching up to 1400°C. Also, in aero engines, the ring temperature reaches around 1550°C. Therefore, the coatings used in aero engine applications undergo short duration thermal cycles at very high temperature. The mean metal temperatures reach around 950°C and can increase up to 1100°C. But in industrial gas turbines, it varies from 800 to 950°C. Operating temperature of industrial gas turbines slowly reaches to maximum and ideally remains constant for thousands of hours, unlike aero engines.


Sign in / Sign up

Export Citation Format

Share Document