Analysis of Thermal Field of Gear Driving with Meshed Medium Belt

2013 ◽  
Vol 561 ◽  
pp. 542-546
Author(s):  
Zhi Min Fan ◽  
Liang Gao ◽  
Hui Min Li ◽  
Ru Cheng Liu

Solid models of the involute gear, the gear with meshed medium belt and the medium belt were built with the PROE software. Then the steady-sate temperature field of the solid model was analyzed with ANSYS software. The result showed that the body temperature distribution on the tooth face was not effected by the medium belt. Different duty parameters were selected to analyze the highest temperature of the medium belt. So theory basis for choose of the medium belt and the duty parameters was provided.

2021 ◽  
Author(s):  
Bo Zhang ◽  
Shan Huang ◽  
Hanrui Zhang ◽  
Haiyan Tu

Abstract Background: Moxibustion has been widely used in Chinese medicine treatment and health care, it is necessary to study the mechanism and characteristics of moxibustion treatment. The warm effect of moxibustion is closely related to the therapeutic effect. Studying the distribution and change of thermal field is an effective way to understand the mechanism of moxibustion. Methods: The finite element analysis software COMSOL was used to establish the heat transfer model to simulate the whole moxibustion process. Two kinds of suspended moxibustion methods, including mild moxibustion and sparrow-pecking moxibustion, were used to perform moxibustion trial at Zusanli acupoint (ST36) of volunteers, with Institutional Review Board (IRB) approval, and the thermal field on the skin surface was detected with an infrared thermometer. Results: Moxibustion method and moxibustion distance are the factors that affect the temperature change. The temperature rising speed of mild moxibustion was slower than that of sparrow-pecking moxibustion. When the moxibustion distance changes, the temperature changes obviously. If the moxibustion distance does not change, the body temperature will continue to rise slowly. If the distance increases, the body temperature will show a downward trend. On the contrary, it goes up. The thermal fields of mild moxibustion and sparrow-pecking moxibustion were distributed in concentric circles around Zusanli. After natural cooling, the temperature of subcutaneous tissue was higher than that of epidermis.Conclusion: The speed of skin temperature change is affected by the method of moxibustion. The temperature field characteristics formed on the skin surface and acupoint are affected by the moxibustion distance and the moxibustion duration. Moxibustion will produce warm heat stimulation to the subcutaneous tissue.


2010 ◽  
Vol 168-170 ◽  
pp. 1117-1121
Author(s):  
Xiao Yong Li ◽  
Zhi Gang Zhang

An experimental study is conducted to simulate the thermal field in mass concrete. Accurate prediction of the thermal stress by analysis is quite difficult particularly at early ages, due to uncertain age-dependent properties of concrete. A series of tests was conducted in which the temperature was measured for a large number of observation points. The effect of aging and the amount of measuring points on thermal field development that can occur in realistic structures was evaluated. Numerical simulations of the thermal field setup were also performed using the finite element with ANSYS software to verify and extend the experimental interpretation and to determine the maximum temperature value which would occur under construction process. Mass concrete temperature field and stress field for specific projects were measured and analyzed. Numerical simulation of mass concrete temperature field for the actual project is compared with the measured results. The results show that the temperature field of numerical simulation results and measured curves result are of the same trend. And it is feasible that mass concrete temperature field is simulated based on ANSYS.


2021 ◽  
Vol 2021 (3) ◽  
pp. 4534-4539
Author(s):  
S. Brier ◽  
◽  
J. Regel ◽  
M. Putz ◽  
M. Dix ◽  
...  

The paper presents a numerical simulation of thermal induced tool displacement during milling oper-ation. An unidirectional finite element model is developed which consists of two sections. A CFX model and a thermal transient model. With the aid of CFX module, the conjugated heat transfer be-tween milling tool and coolant fluid is described. The result of these efforts is the body temperature field of the end mill cutter due to thermal load, which is the thermal fingerprint of the cutting process. Subsequently the calculated body temperature field is linked with a transient-structural module to cal-culate the resulting thermal elastic displacement of the milling cutter. The thermo-elastic displace-ment of the tool is determined by examining a pilot node at the tip of the end mill, whose displace-ment is calculated in relation to the global coordinate system of the model.


2010 ◽  
Vol 43 ◽  
pp. 703-706
Author(s):  
Zai Liang Chen ◽  
Ji Zhong Yan

The heater’s setting temperature is calculated by using the heat transfer theory. Using the thermal module of ANSYS software to simulate the plastic sheet’s surface temperature field, acquired the distribution of the plastic sheet’s surface temperature field. The results show to get even spraying with the right temperature for spraying experiments.


Author(s):  
P. Hanafizadeh ◽  
B. Sajadi ◽  
M. H. Saidi ◽  
H. Khalkhali ◽  
M. Taherraftar

Automotive industry frequently needs to test new products, according to different production parameters, in order to determine the actual thermal behavior of bodies before mass production is implemented. Numerical simulation of these processes can reduce the very expensive and time consuming experimental procedures. For the drying and hardening process of the top paint applied in the coating process, the body temperature must be raised according to the paint manufacturer regulations. Consequently, prediction of temperature distribution of the car body during various zones of ovens is very vital in the design and performance analysis of the paint dryers. In this research, a novel semi-analytical approach has been used to predict the body temperature variation during the curing process. Considering the energy balance for the body, a set of differential equation has been extracted, depending on the oven zone. These equations can be solved numerically to find the transient temperature profile of the car body. Some parameters in these equations have been achieved by experimental procedure. The results show that the present model predictions are in a good agreement with the experimental data. Therefore, the developed model has a reasonable accuracy and can be used as an efficient robust approach to distinguish overall thermal behavior of the body. These techniques can be used to optimize the design of curing paint oven.


2013 ◽  
Vol 281 ◽  
pp. 211-215
Author(s):  
Yu Ning Wang ◽  
Zhi Li Sun ◽  
Ming Ang Yin

This research analyze the gear for body temperature field, according to the body temperature field, it calculates comprehensive deformation of the loaded gear by using the contact method. It extracts the deformation of gear surface along the gear thickness and gear tall direction, calculating the gear non-involute error. It calculates the gear transmission error considering the thermal deformation. The results show that: Considering thermal deformation non-involute error of addendum is maximum, and there are no mutations in gear non-involute error the transmission error caused by mutation of elastic deformation mutate at single and double tooth alternating position. The bigger mutation becomes, the bigger vibration amplitude will be. The results of the study provide a solid basis to improve the motion transmission accuracy of gear.


2020 ◽  
Vol 16 (1) ◽  
pp. 4-12
Author(s):  
Vandana Garg ◽  
Rohit Dutt

Background: Fever, is known as pyrexia, may occur due to infection, inflammation, or any tissue damage and disease states. Normally, the infected or damaged tissue initiates the enhanced formation of pro-inflammatory mediators like cytokines which further increases the synthesis of prostaglandin E2 (PgE2) near the hypothalamic area and thereby trigger the hypothalamus to elevate the body temperature. Objective: Antipyretics are the agents which reduce the elevated body temperature. The most commonly used antipyretic agent, paracetamol, may be fatal due to its side effects. Methods: In this review paper, Chemical Abstracts, Google Scholar, PubMed, and Science Direct were the sources for the published article to collect information regarding antipyretic activity. Results: This review compiles the antipyretic plants that may be useful to treat fever due to various diseases. Conclusion: These medicinal plants could be good alternatives for traditional allopathic antipyretics.


Author(s):  
Dr.Saurabh Parauha ◽  
Hullur M. A. ◽  
Prashanth A. S.

In Ayurveda, Jwara is not merely the concept of raised body temperature, but as is said in Charaka Samhita, 'Deha- Indriya- Manah- Santap' is the cardinal symptoms of Jwara. This can be defined as the state where the body, mind as well as sense oragans suffer due to the high temperature. Vishamajwara is a type of fever, which is described in all Ayurvedic texts. Charaka mentioned Vishamajwara and Chakrapani have commented on Vishamajwara as Bhutanubanda, Susruta affirmed that Aagantuchhanubhandohi praysho Vishamajware. Madhavakara has also recognised Vishamajwara as Bhutabhishangajanya (infected by microorganism). Vishamajwara is irregular (inconsistent) in it's Arambha (nature of onset commitment), Kriya (action production of symptoms) and Kala (time of appearance) and possesses Anushanga (persistence for long periods). The treatment of this disease depends upon Vegavastha and Avegavastha of Jwara. Various Shodhana and Shamana procedures are mentioned in classics to treat Visham Jwara.


Sign in / Sign up

Export Citation Format

Share Document