Demonstration of the Benefits of SAE 30 Stationary Gas Engine Oil in Full Scale Engine Tests

2021 ◽  
Author(s):  
Thijs Schasfoort ◽  
Zoe Fard ◽  
Torsten Gehrmann ◽  
Steffen Hollatz

Abstract This paper evaluates the benefits of an SAE 30 monograde stationary gas engine oil (SGEO) in comparison with SAE 40 monograde SGEOs with the focus on two main areas. First, to demonstrate and quantify the positive impact of lower viscosity on the fuel consumption rate, and second to demonstrate the faster lubrication of hard to reach points in the engine during startup. The current industry recognized fuel efficiency test methods for passenger car and on-road diesel engine sectors are not suitable for evaluating the fuel efficiency performance of a gas engine oil because of the significant differences in fuel type, engine operating conditions, and oil formulations. This paper, therefore, describes comparative studies of three different gas engine oils in a modern MAN E3262 E302 gas engine that was carefully adapted and fully instrumented. The performance of each oil with respect to fuel efficiency was assessed in an extensive program comprising endurance testing, stationary tests on various load/speed points and dynamic tests running the engine fired as well as non-fired (motored). Another part of the test program explores the lubrication of hard to reach points in the engine, e.g. valve guide. The paper describes how the SAE 30 monograde oil results in faster lubrication of these parts during startup in comparison with the SAE 40 oils.

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Rupesh Roshan ◽  
Martin Priest ◽  
Anne Neville ◽  
Ardian Morina ◽  
Xin Xia ◽  
...  

Theoretical studies have shown that in severe operating conditions, valve train friction losses are significant and have an adverse effect on fuel efficiency. However, recent studies have shown that existing valve train friction models do not reliably predict friction in boundary and mixed lubrication conditions and are not sensitive to lubricant chemistry. In these conditions, the friction losses depend on the tribological performance of tribofilms formed as a result of surface–lubricant additive interactions. In this study, key tribological parameters were extracted from a direct acting tappet type Ford Zetec SE (Sigma) valve train, and controlled experiments were performed in a block-on-ring tribometer under conditions representative of boundary lubrication in a cam and follower contact. Friction was recorded for the tribofilms formed by molybdenum dithiocarbamate (MoDTC), zinc dialkyldithiophosphate (ZDDP), detergent (calcium sulfonate), and dispersant (polyisobutylene succinimide) additives in an ester-containing synthetic polyalphaolefin (PAO) base oil on AISI E52100 steel components. A multiple linear regression technique was used to obtain a friction model in boundary lubrication from the friction data taken from the block-on-ring tribometer tests. The model was developed empirically as a function of the ZDDP, MoDTC, detergent, and dispersant concentration in the oil and the temperature and sliding speed. The resulting friction model is sensitive to lubricant chemistry in boundary lubrication. The tribofilm friction model showed sensitivity to the ZDDP–MoDTC, MoDTC–dispersant, MoDTC–speed, ZDDP–temperature, detergent–temperature, and detergent–speed interactions. Friction decreases with an increase in the temperature for all ZDDP/MoDTC ratios, and oils containing detergent and dispersant showed high friction due to antagonistic interactions between MoDTC–detergent and MoDTC–dispersant additive combinations.


2019 ◽  
Vol 8 (4) ◽  
pp. 6383-6388

The aim of this research is to investigate the usage of passenger car engine oil into a motorcycle engine by determining the after effect of the lubricant to the engine. The difference between engine oil of passenger car and motorcycle is the friction modifier that is in the formulation of cars engine lubricant. A motorcycle engine has a wet clutch system in the crank case, such engine oil with a friction modifier will decrease the clutch capacity of the system. In this study, three types of methodology tests have been conducted such as endurance test which combined with the fuel efficiency test at the same time, drag test and Ferrography tests that were conducted to determine the amount of contamination in both types of engine oil. The results showed that using a passenger car lubricant on motorcycle engine did not affect the engine compartment and parts. The numbers of metal wear in the used oil of both types of cars and motorcycle were slightly different.


Author(s):  
Keun Ryu ◽  
Augustine Cavagnaro

An electric turbocompound (ETC) system for heavy duty diesel engines offers significant system level benefits, such as improved fuel efficiency and reduced NOx emissions with a lower CO2 footprint. Presently, a high speed switched reluctance type motor/generator is integrated into a turbocharger shaft between the turbine and compressor wheels. The motor assists rapid acceleration of the turbocharger shaft, thereby rendering faster transient response. At steady or over-boost operating conditions, the generator provides electric power which can be used directly or stored in an on-board storage device. ETCs operate at high rotational speeds and, if equipped with fluid film bearings, use pressurized engine oil to lubricate the bearings (journal and thrust). This paper presents comprehensive predictions of the linear and nonlinear shaft motions of an ETC supported on floating ring bearings. A rotor structural finite element model integrates the floating ring bearing model for prediction of the rotor-bearing system (RBS) linear and nonlinear forced responses under actual operating conditions. Predictions show a complex rotordynamic behavior of the RBS with large amplitude subsynchronous motions over a wide speed range. However, the subsynchronous whirl motions reach a limit cycle enabling continuous operation without system failure. Most importantly, stiffness of the lamination stack mounted on the shaft has a significant effect on the amplitude and frequency content of the shaft motion. The present analysis effectively aids to accelerate ETC prototype development with increased reliability and product troubleshooting.


Author(s):  
Walter Ga¨rtner ◽  
Rainer Aufsicher ◽  
Johannes Humer ◽  
Thomas Rumpf

Gas engine development moves progressively forward not only in direction of fuel efficiency and power density but also in using alternative gases and fuels. For bearings and bushings this means that they will experience more severe operating conditions with respect to load, cavitation, corrosion and wear. According to the demand for increased performance, bearings with hard surfaces — with sputtered overlays — have been installed and have now served for several thousand hours of operation. These bearing types offer not only high load carrying capability and wear resistance but in addition show increased corrosion and cavitation stability which results in an extraordinary life expectancy.


Author(s):  
Nikhil Dayanand ◽  
John D. Palazzotto ◽  
Alan T. Beckman

In order to investigate the possible environmental and economic benefits of lubricants optimized for stationary natural gas engine efficiency, a decision was made to develop a test stand to quantify the effects of lubricant viscosities and formulations on the brake specific fuel consumption. Many fuel economy tests already exist for evaluating gasoline and heavy duty diesel motor oils which have proven the benefit of fuel economy from different lubricant formulations. These engines would not be suitable tools for evaluating the fuel economy performance of lubricating oils formulated specifically for stationary natural gas engines, since there are significant differences in operating conditions, fuel type, and oil formulations. This paper describes the adaptation of a Waukesha VSG F11 GSID as a tool to evaluate fuel consumption performance. The performance of brake specific fuel consumption when using different formulations was measured at selected high loads and rated speed. The results of the testing program discuss the viscosity and additive effects of stationary natural gas engine oil formulations on brake specific fuel consumption. The results will detail the change in brake specific fuel consumption between natural gas engine oil formulations blended to varying viscosities and compared to a typical natural gas engine oil formulation with a viscosity of 13.8 cSt @ 100°C. The second portion of the test program explores the effect of different additive packages that were blended to the same finished oil viscosity. It was acknowledged that there were statistical differences in brake specific fuel consumption characteristics between lubricants different in viscosity and additive formulations.


2005 ◽  
Vol 33 (3) ◽  
pp. 156-178 ◽  
Author(s):  
T. J. LaClair ◽  
C. Zarak

Abstract Operating temperature is critical to the endurance life of a tire. Fundamental differences between operations of a tire on a flat surface, as experienced in normal highway use, and on a cylindrical test drum may result in a substantially higher tire temperature in the latter case. Nonetheless, cylindrical road wheels are widely used in the industry for tire endurance testing. This paper discusses the important effects of surface curvature on truck tire endurance testing and highlights the impact that curvature has on tire operating temperature. Temperature measurements made during testing on flat and curved surfaces under a range of load, pressure and speed conditions are presented. New tires and re-treaded tires of the same casing construction were evaluated to determine the effect that the tread rubber and pattern have on operating temperatures on the flat and curved test surfaces. The results of this study are used to suggest conditions on a road wheel that provide highway-equivalent operating conditions for truck tire endurance testing.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Luqman S. Maraaba ◽  
Zakariya M. Al-Hamouz ◽  
Abdulaziz S. Milhem ◽  
Ssennoga Twaha

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of the machine under different operating conditions using a developed qd0 mathematical model and an experimental setup. The dynamic and steady-state performance analyses have been performed using the determined parameters. It is found that the experimental results are close to the mathematical model results, confirming the accuracy of the studied test methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.


Sign in / Sign up

Export Citation Format

Share Document