Thermal Analysis of Micro Capillary Pumped Loop System

Author(s):  
Chin-Tsan Wang ◽  
Tzong-Shyng Leu ◽  
Jui-Ming Yu ◽  
Yuh-Chung Hu

A Capillary Pumped Loop is a sort of “two-phase heat transport device”. In this study, the micro capillary pumped loop (MCPL) and temperature sensors embedded in the micro-channels were fabricated using MEMS technology. An open type of MCPL was applied to determine the thermal analysis of MCPL corresponding to different injection volume flow rates under the condition of constant heating power 20W. A series of experiments yielded numerous results and are as follows: first, a larger injection volume flow rate results in a lower system temperature. Second, the thermal bubbles begin to degenerate into smaller bubbles at Q volume = 2 μl/min. In addition, the phenomenon of slug flow is observed with increasing injection volume flow rates, especially for the case of Q volume = 15 μl/min. Although the temperature of MCPL was reduced with the injection volume rate, the MCPL possessed an almost constant temperature difference regardless of injection volume flow rate. These findings will be useful in determining the optimal design of MCPL.

Author(s):  
Shuaihui Sun ◽  
Wang Zhe ◽  
Li Liansheng ◽  
Bu Gaoxuan

The two-phase suction injection can reduce the discharge temperature of scroll refrigeration compressors, which work under a high-pressure ratio. The heat transfer along the pipe axis from the shell affects the two-phase suction injection significantly for the compressor with a high-temperature shell. In this paper, the suction mixing and heat transfer model was developed to calculate the heat transfer along the pipe axis from the high-temperature compressor shell. Then the model was coupled with the two-phase compressor model to obtain the compressor performance under different suction injection volume flow rates. The compressor with two-phase suction injection was tested under different injection volume flow rates to validate the model. The results indicated that the discharge temperature decreased by 2 °C when the mass injection ratio increased by 1%. As the injection volume flow rates increased, the total mass flow rate increased due to the reduction of the specific volume of the suction fluid; the input work decreased because of the reduction of specific work and the improvement of the motor's electric efficiency. The cooling capacity decreased since the cooling capacity of the injection refrigerant was wasted for cooling the suction process and the compressor shell, especially at high injection volume flow rates. The coefficient of performance reached the maximum value at the injection volume flow rate of 0.015 m3·h−1 and became lower than the coefficient of performance without injection when the injection volume flow rate raised to 0.035 m3·h−1. Hence, the two-phase suction injection can reduce the discharge temperature efficiently at low injection volume flow rates with a slight improvement of coefficient of performance.


1983 ◽  
Vol 3 (3) ◽  
pp. 369-375 ◽  
Author(s):  
S. Nakamura ◽  
G. M. Hochwald

The effect of changes in brain blood flow on cerebrospinal fluid (CSF) volume flow rates, and that of changes in CSF volume flow rates on brain blood flow were determined in both normal and kaolin-induced hydrocephalic cats. In both groups of cats, blood flow in grey and white matter, cerebral cortex, and choroid plexus was measured with 105Ru microspheres during normocapnia, and again with 141Ce microspheres after arterial Pco2 was either increased by 300% or decreased by 50%. Blood flow measurements were also made during perfusion of the ventricular system with mock CSF and repeated during perfusion with anisosmotic mannitol solutions to alter CSF volume flow rate. In 30 normal and 26 hydrocephalic cats, blood flow to the cerebral cortex, white matter, and choroid plexus was similar; only blood flow to the caudate nucleus was greater in normal cats. The weight of the choroid plexus from hydrocephalic cats decreased by 17%. Blood flow in the choroid plexus of all cats decreased by almost 50% following hypercapnia or hypocapnia, without a change in the CSF volume flow rate. There was no change in cerebral or choroidal blood flow when CSF volume flow rate was either increased by 170% or decreased by 80%. These results suggest that choroid plexus blood flow does not limit or affect the volume flow rate of CSF from the choroid plexus. CSF volume flow rate can be altered without corresponding blood flow changes of the brain or choroid plexus. Choroid plexus blood flow and the reactivity of both brain and choroidal blood flow to changes in arterial Pco2 were not affected by the hydrocephalus. The lower CSF formation rate of hydrocephalic cats can be attributed in part to the decrease in the mass of choroid plexus tissue.


This paper documents the optimization of different parameters of micro channel heat sink which enhance the heat transfer. The objective is to find the major thermal resistance in micro channel and its effect on other parameters. Water is used as a coolant and the initial values of convective heat transfer coefficient and volume flow rate are 30000 W/m2K and 1 lpm respectively. Different graph are plotted between pressure drop,heat transfer co-efficient, pressure drop,thermal resistance and flow rate to finally achieve the optimized valus of channel width and height, hydraulic diameter, thermal resistance and pressure drop. The result achieved are in good agreement with the previous researches.


Author(s):  
Seyed Ali Atyabi ◽  
Ebrahim Afshari ◽  
Mohammad Yaghoub Abdollahzadeh Jamalabadi

Purpose In this paper, a single module of cross-flow membrane humidifier is evaluated as a three-dimensional multiphase model. The purpose of this paper is to analyze the effect of volume flow rate, dry temperature, dew point wet temperature and porosity of gas diffusion layer on the humidifier performance. Design/methodology/approach In this study, one set of coupled equations are continuity, momentum, species and energy conservation is considered. The numerical code is benchmarked by the comparison of numerical results with experimental data of Hwang et al. Findings The results reveal that the transfer rate of water vapor and dew point approach temperature (DPAT) increase by increasing the volume flow rate. Also, it is found that the water recovery ratio (WRR) and relative humidity (RH) decrease with increasing volume flow rate. In addition, all mixed results decrease with increasing dry side temperature especially at high volume flow rates and this trend in high volume flow rates is more sensible. Although the transfer rate of water vapor and DPAT increases with increasing the wet inlet temperature, WRR and RH reduce. Increasing dew point temperature effect is more sensible at the wet side is compared with the dry side. The humidification performance will be enhanced with increasing diffusion layer porosity by increasing the wet inlet dew point temperature, but has no meaningful effect on other operating parameters. The pressure drop along humidifier gas channels increases with rising flow rate, consequently, the required power of membrane humidifier will enhance. Originality/value According to previous studies, the three-dimensional numerical multiphase model of cross-flow membrane humidifier has not been developed.


Author(s):  
Shuaihui Sun ◽  
Pengcheng Guo ◽  
Jianjun Feng ◽  
Xiaobo Zheng ◽  
Zhizhong Wang

Suction injection cooling can be usually used in scroll refrigeration compressor which works under the high speed or high pressure ratio condition, when the atmosphere is severe. In the present paper, the suction injection process is simulated with isobaric adiabatic mixing model, which has been employed by many researchers; and the performance of the scroll compressor with suction injection cooling was investigated experimentally. The test rig was established, and the scroll compressor with suction injection cooling was measured when the pressure ratio rose from 3.4 to 4.5, and the injection volume flow rate rose from 0 to 0.085 m3·h−1. The results indicate that the discharge temperature decreases remarkably with the injection volume flow rate. Also, the COP (Coefficient of Performance) decrease with the injection volume flow rate. When the injection mass ratio is lower than 20%, the decrease of COP is acceptable, at different pressure ratio. At high pressure ratio, the COP could keep unchanged when the injection mass ratio is lower than 10%. Hence, the effect of suction injection cooling is better at the high pressure ratio and low injection volume flow rate. The ideal simulation results agree well with the experimental ones at low injection volume flow rate, but deviate from that at high injection volume flow rate. This is because that the gas-liquid separation happened at high injection ratio, and the isobaric adiabatic mixing model could not predict the process practically. Therefore, a new model will be developed to describe the process accurately.


2021 ◽  
Vol 13 (18) ◽  
pp. 10300
Author(s):  
Chuan Choong Yang ◽  
Noor Fiqri Razqi Bin Noor Hanafi ◽  
Noor Hazrin Hany Bt Mohamad Hanif ◽  
Ahmad Faris Ismail ◽  
Hsueh-Hsien Chang

The purpose of harvesting vibration energy is to obtain clean and sustainable energy by converting vibration energy from ambient sources into a voltage output. In this work, a piezoelectric sensor, PZT-5H is attached to a 3D printed and custom-made mounting to be placed at an air conditioning condenser unit, to harvest vibration energy. The configuration of the harvester is non-intrusive, in which the harvester did not intrude into compressor unit operation. Temperature (20 °C, 22 °C, and 24 °C) and air volume flow rates (3 levels of air volume flow rate at 245 L/second, 274 L/second, and 297 L/second) were taken into consideration in this investigation. An accelerometer was first used to investigate the optimum vibration frequency in Hertz, and six locations were identified. Next, the piezoelectric sensor was mounted at these six locations, and the output root-mean-square (RMS) voltage from the piezoelectric sensor was obtained. The analysis of variance (ANOVA) indicated that temperature and air volume flow rates factors were significant. It was found that the location identified with the highest amount of vibration at 830.2 Hz from accelerometer measurement, was also the highest amount of RMS voltage, at 510.82 mV, harvested by the piezoelectric, from the temperature of 20 °C and air volume flow rates at high level (air flow volume flow rate at 297 L/second). From this work, it is feasible to utilize this novel method of harvesting waste vibration energy from the air conditioning compressor unit.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1341
Author(s):  
Li Lei ◽  
Yuting Zhao ◽  
Wukai Chen ◽  
Huiling Li ◽  
Xinyu Wang ◽  
...  

In this study, changes in the droplet formation mechanism and the law of droplet length in a two-phase liquid–liquid system in 400 × 400 μm standard T-junction microchannels were experimentally studied using a high-speed camera. The study investigated the effects of various dispersed phase viscosities, various continuous phase viscosities, and two-phase flow parameters on droplet length. Two basic flow patterns were observed: slug flow dominated by the squeezing mechanism, and droplet flow dominated by the shear mechanism. The dispersed phase viscosity had almost no effect on droplet length. However, the droplet length decreased with increasing continuous phase viscosity, increasing volume flow rate in the continuous phase, and the continuous-phase capillary number Cac. Droplet length also increased with increasing volume flow rate in the dispersed phase and with the volume flow rate ratio. Based on the droplet formation mechanism, a scaling law governing slug and droplet length was proposed and achieved a good fit with experimental data.


2019 ◽  
Vol 9 (3) ◽  
pp. 532
Author(s):  
Ekaterina Borovinskaya ◽  
Valentin Khaydarov ◽  
Nicole Strehle ◽  
Alexander Musaev ◽  
Wladimir Reschetilowski

Microreactors intensify chemical processes due to improved flow regimes, mass and heat transfer. In the present study, the effect of the volume flow rate on reactor performance in different reactors (the T-shaped reactor, the interdigital microreactor and the chicane microreactor) was investigated. For this purpose, the saponification reaction in these reactor systems was considered. Experimental results were verified using the obtained kinetic model. The reactor system with a T-shaped reactor shows good performance only at high flow rates, while the experimental setups with the interdigital and the chicane microreactors yield good performance throughout the whole range of volume flow rates. However, microreactors exhibit a higher pressure drop, indicating higher mechanical flow energy consumption than seen using a T-shaped reactor.


2021 ◽  
Author(s):  
Chidirim Enoch Ejim

Abstract Multiphase electric submersible pumps (ESPs) are used to produce gas and liquid in wells with high gas content. These pumps are operated at different speeds, and designed to handle flows with various gas volume fractions (GVFs). This study uses gas-liquid dimensionless parameters to obtain and compare the performance of conventional multiphase pumps. Knowledge of such techniques is important for production engineers, field operators and application engineers to ascertain pump performance for given gas-liquid operating conditions. Gas-liquid performance data for two multiphase pumps with 8.00-inch and 8.62-inch housing diameters were obtained from open literature. The inlet pressure, GVF and rotational speed ranges were 100 to 300 psig, 0 to 0.57, and 3000 to 3600 revolutions per minute (RPM), respectively. The total flow rates varied from 15000 to 60000 barrels per day (BPD). Euler turbomachinery principles for gas-liquid flows were applied to the data to obtain required dimensionless parameters and two-phase dimensionless performance curves for the pumps. The method was tested using dimensionless curves for a given operating condition to obtain pump performance at another operating condition. The results showed that for each rotational speed, the difference in dimensionless pressure between the multiphase pump discharge and inlet decreased with increasing mass-quality-weighted volume flow rate. For each weighted volume flow rate, the difference in pump discharge and inlet dimensionless pressures decreased with increasing intake GVF. The decrease with increasing intake GVF can range between a factor of 3 and 4, depending on the magnitude of the weighted volume flow rate. Using the 3000 RPM data, a two-phase (gas-liquid) dimensionless performance curve was obtained for one of the multiphase pumps with intake GVF and dimensionless volume flow rate parameter as the independent variables. The curve was used to estimate pump performance at 3600 RPM and then compared with the actual reference test data. For the second multiphase pump, two datasets at different intake pressures were used to obtain the effects of intake pressure. The performance for this multiphase pump was a function of dimensionless volume flow rate, intake GVF and intake gas-liquid density ratio. The maximum error in the estimated performance data was within 7%. Overall, the performance of multiphase pumps can be estimated using the technique in this study for the flow conditions analyzed. This study highlights the importance of obtaining dimensionless two-phase performance characteristics of multiphase pumps. Given that these pumps are frequently used in oilfield production operations, capability to determine the pressure boosting performance of the pumps, for given operating conditions, is important to field operating personnel and design engineers. This knowledge benefits the operator to optimally produce hydrocarbons from high gas-content wells and maximize the economic bottom line from the field asset.


Sign in / Sign up

Export Citation Format

Share Document