A Study of Steam-Water Countercurrent Flow Model in TRACE Code

Author(s):  
Yi-Hsiang Cheng ◽  
Chunkuan Shih ◽  
Jong-Rong Wang ◽  
Hao-Tzu Lin

This paper studied the countercurrent flow model in the TRACE code version 5.0. Steam and water are chosen as the working fluids that flow counter-currently in a circular pipe. Three types of the countercurrent flow models, the Wallis, the Kutateladze and the Bankoff correlations, are investigated. A single pipe model was built for the studies of the Wallis and the Kutateladze correlations, and the variable in the calculation model is the pipe diameter. A perforated plate model was built to study the Bankoff correlation, and the variables include the pipe diameter, the hole diameter, the number of holes and the plate thickness. The hydraulic diameter of the pipe varies from 2.5–200 mm for validating both the Wallis and the Kutateladze correlations. While validating the Bankoff correlation, the hydraulic diameter of the pipe is of 50 and 200 mm, and the plate thickness changes as 10 and 40 mm. Through this study, we validate the countercurrent flow model in the TRACE code, and provides comments on the application ranges of these three correlations.

1986 ◽  
Vol 51 (11) ◽  
pp. 2489-2501
Author(s):  
Benitto Mayrhofer ◽  
Jana Mayrhoferová ◽  
Lubomír Neužil ◽  
Jaroslav Nývlt

A model is derived for a multi-stage crystallization with cross-current flows of the solution and the crystals being purified. The purity of the product is compared with that achieved in the countercurrent arrangement. A suitable function has been set up which allows the cross-current and countercurrent flow models to be compared and reduces substantially the labour of computation for the countercurrent arrangement. Using the recrystallization of KAl(SO4)2.12 H2O as an example, it is shown that, when the cross-current and countercurrent processes are operated at the same output, the countercurrent arrangement is more advantageous because its solvent consumption is lower.


The traffic flow conditions in developing countries are predominantly heterogeneous. The early developed traffic flow models have been derived from fluid flow to capture the behavior of the traffic. The very first two-equation model derived from fluid flow is known as the Payne-Whitham or PW Model. Along with the traffic flow, this model also captures the traffic acceleration. However, the PW model adopts a constant driver behavior which cannot be ignored, especially in the situation of heterogeneous traffic.This research focuses on testing the PW model and its suitability for heterogeneous traffic conditions by observing the model response to a bottleneck on a circular road. The PW model is mathematically approximated using the Roe Decomposition and then the performance of the model is observed using simulations.


2013 ◽  
Vol 6 (4) ◽  
pp. 6493-6568 ◽  
Author(s):  
R. Fischer ◽  
S. Nowicki ◽  
M. Kelley ◽  
G. A. Schmidt

Abstract. The method of elevation classes has proven to be a useful way for a low-resolution general circulation model (GCM) to produce high-resolution downscaled surface mass balance fields, for use in one-way studies coupling GCMs and ice flow models. Past uses of elevation classes have been a cause of non-conservation of mass and energy, caused by inconsistency in regridding schemes chosen to regrid to the atmosphere vs. downscaling to the ice model. This causes problems for two-way coupling. A strategy that resolves this conservation issue has been designed and is presented here. The approach identifies three grids between which data must be regridded, and five transformations between those grids required by a typical coupled GCM–ice flow model. This paper shows how each of those transformations may be achieved in a consistent, conservative manner. These transformations are implemented in GLINT2, a library used to couple GCMs with ice models. Source code and documentation are available for download. Confounding real-world issues are discussed, including the use of projections for ice modeling, how to handle dynamically changing ice geometry, and modifications required for finite element ice models.


Author(s):  
Cem Dolu ◽  
Lu¨tfullah Kuddusi

First and second order slip flow models in rectangular microchannels heated at constant and uniform wall temperature are studied. The velocity and temperature profiles for hydrodynamically and thermally developed incompressible slip flow regime available in literature are used. The average nondimensional slip velocity and temperature jump are found by using first and second order slip flow models. The average Nusselt number is also derived by using both first and second order slip flow models. The effects of Knudsen number, aspect ratio and second order slip flow model on the heat transfer characteristics of microchannel are explored.


Author(s):  
Boris I. Mamaev ◽  
Mikhail M. Petukhovskiy

Nowadays 2D through-flow models are widespread for designing and analysis of a turbine. Unlike 2D calculations, the measurements show that a non-uniform inlet gas temperature profile is strongly attenuated to the outlet of a turbine. This attenuation can be taken into account in through-flow models only using some corrective coefficients. The objective of this work was to find such an empirical coefficient. The results of full-scale tests of several power GTUs and aviation GTEs were employed to obtain values of the temperature profile attenuation coefficient in the through-flow model for various span locations of airfoil rows. During the tests detailed radial-circumferential distributions of the gas temperature upstream of each of rows and downstream of the turbines were measured (in absolute motion for stator and in relative motion for rotor). The values of the attenuation coefficient for airfoil rows of the three front stages were obtained by means comparison of experimental and computed results. The experience shows that the attenuation coefficient is easily incorporated into the 2D gas-dynamic codes. This incorporation allows spanwise distributions of flow parameters to be predicted and the airfoil geometry and cooling mass flow to be chosen more correctly.


2010 ◽  
Vol 17 (2) ◽  
pp. 177-186 ◽  
Author(s):  
V. Pérez-Muñuzuri ◽  
F. Huhn

Abstract. Horizontal mixing has been found to play a crucial role in the development of spatial plankton structures in the ocean. We study the influence of time and length scales of two different horizontal two-dimensional (2-D) flows on the growth of a single phytoplankton patch. To that end, we use a coupled model consisting of a standard three component ecological NPZ model and a flow model able to mimic the mesoscale structures observed in the ocean. Two hydrodynamic flow models are used: a flow based on Gaussian correlated noise, for which the Eulerian length and time scales can be easily controlled, and a multiscale velocity field derived from altimetry data in the North Atlantic ocean. We find the optimal time and length scales for the Gaussian flow model favouring the plankton spread. These results are used for an analysis of a more realistic altimetry flow. We discuss the findings in terms of the time scale of the NPZ model, the qualitative interaction of the flow with the reaction front and a Finite-Time Lyapunov Exponent analysis.


Author(s):  
Sho Ikeda ◽  
Masakazu Sato ◽  
Naoto Kasahara

Fast Breeder Reactors and chemical plants that is operated at elevated temperature must be designed considering creep deformation in addition to elastic-plastic deformation. Especially at structural discontinuities, strain concentration induced by stress-strain redistribution reduces creep-fatigue strength. For this reason, a design method is needed for appropriately evaluating inelastic behavior at a structural discontinuity. As one of simplified methods with elastic analysis, a rational method with Stress Redistribution Locus (SRL) has been studied during recent years. Previous studies have shown that SRL does not depend on constitutive equations or on the magnitude of loading. And through the elastic-plastic-creep analysis of a one-dimensional pipe model, it was revealed that there was a relation between stress-strain redistribution and the size of elastic core. The purpose of this study is to clarify the mechanism of stress-strain redistribution in complex structures like actual components. Multi-dimensional stress-strain distribution and multiaxial stress occur in those structures. For considering those effects, inelastic analyses on perforated plate were performed and the relation between the region of elastic cores and SRL was examined. Then, it was revealed that SRL could be divided into two parts. One half is affected by the region of elastic core and the other half depends on the loading type. Furthermore, this paper proposes the new SRL method based on the mechanism and validates the method.


2006 ◽  
Vol 291 (5) ◽  
pp. H2136-H2141 ◽  
Author(s):  
M. Marxen ◽  
J. G. Sled ◽  
L. X. Yu ◽  
C. Paget ◽  
R. M. Henkelman

Blood perfusion in organs has been shown to be heterogeneous in a number of cases. At the same time, a number of models of vascular structure and flow have been proposed that also generate heterogeneous perfusion. Although a relationship between local perfusion and vascular structure has to exist, no model has yet been validated as an accurate description of this relationship. A study of perfusion and three-dimensional (3D) arterial structure in individual rat kidneys is presented, which allows comparison between local measurements of perfusion and model-based predictions. High-resolution computed tomography is used to obtain images of both deposited microspheres and of an arterial cast in the same organ. Microsphere deposition is used as an estimate of local perfusion. A 3D cylindrical pipe model of the arterial tree is generated based on an image of the arterial cast. Results of a flow model are compared with local microsphere deposition. High correlation ( r2 > 0.94) was observed between measured and modeled flows through the vascular tree segments. However, the relative dispersion of the microsphere perfusion measurement was two- to threefold higher than perfusion heterogeneity calculated in the flow model. Also, there was no correlation in the residual deviations between the methods. This study illustrates the importance of comparing models of local perfusion with in vivo measurements of perfusion in the same biologically realistic vascular tree.


2010 ◽  
Vol 37 (10) ◽  
pp. 1378-1383 ◽  
Author(s):  
Yi-Hsiang Cheng ◽  
Chunkuan Shih ◽  
Jong-Rong Wang ◽  
Hao-Tzu Lin

Sign in / Sign up

Export Citation Format

Share Document