Comparison Between PARCS and MCNP6 Codes on VVER1000/V320 Core

Author(s):  
Guido Mazzini ◽  
Bruno Miglierini ◽  
Marek Ruščák

Research Centre Rez solves several safety related projects dealing with safety of Czech NPPs, some of which require fully functioning Three Dimensional (3D) model of the reactor core. While in a number of safety analysis of various accident scenarios it is sufficient to use one point reactor kinetics, there are selected types of accidents in which it is useful to model the space (3D) neutron kinetics, in particular control rod ejections, boron dilution scenarios, including transitions from design basis to beyond design basis accidents. This paper is focused to analyze the present model of the core of VVER1000/V320 reactor. Which is applicable for 3D modeling of neutron kinetics in selected design and beyond design basis accidents. The model is based on a cross-sections library created by SCALE 6.1.2/TRITON simulations. PARCS 3.2 code uses homogenized cross-sections libraries to calculate neutronic and other core parameters of the PWR reactors. Similar model is prepared with MCNP6 for comparison between deterministic (Pn spherical-harmonics method used in PARCS) and the stochastic (Monte Carlo) approach (used in MCNP6). Such comparison will serve as a demonstration of the capability of the PARCS code for VVER1000/V320 analyses.

Author(s):  
Asuka Matsui ◽  
Masashi Tamitani ◽  
Yoshiro Kudo ◽  
Sho Takano ◽  
Tatsuya Iwamoto ◽  
...  

TRACG code, coupling a three-dimensional neutron kinetics model for the reactor core with thermal-hydraulics based on two-fluid conservation equations, is a best-estimate (BE) code for BWRs to realistically simulate their transient and accidental behaviors. TRACG05 is the latest version and was originally developed to analyze Reactivity Initiated Accident (RIA). TRACG05 incorporates the same neutronics model of the latest core simulator with a three-group analytic-polynomial nodal expansion method. In addition to application to RIA safety analyses, TRACG05 has been planned to apply to safety analyses for Anticipated Operational Occurrences (AOOs) in BWRs by using a Best Estimate Plus Uncertainty (BEPU) methodology. To apply BEPU with TRACG05 to BWR AOOs, validations must be performed to evaluate the uncertainties of models relevant to important phenomena by comparing with appropriate test results for BWR AOOs. At first, a PIRT (Phenomena Identification and Ranking Table) was developed for each event scenario in AOOs to identify relevant physical processes and to determine their relative importance. According to the PIRT, an assessment matrix was established for separate effects tests (SETs), component effects tests (CETs), integral effects tests (IETs), and integral BWR plant start-up tests. The assessment matrix related the important phenomena to the test database, which was confirmed that all the important phenomena were covered by all tests specified in the matrix. According to the assessment matrix, comparison analyses have been specified to perform systematic and comprehensive validations of TRACG05 applicability to AOOs. The comparison analyses were done as the integrated code system with the up-stream reactor core design codes, therefore higher quality was enabled to evaluate the safety parameters. As the result, the uncertainties of important models in TRACG05 were determined so as to enable BEPU approaches for AOO safety issues. Here, as a SET, comparisons between TRACG05 and experimental data of void fraction in a bundle simulating an actual fuel bundle, which is one of the most important models in the application of TRACG05 to AOO analyses are shown. In addition, as pressurization event in AOOs, comparisons between TRACG05 and experimental data of Peach Bottom 2 Turbine Trip Test, which is one of integral tests for a BWR plant, are shown. This is the only test showing large neutron flux increase and strong coupling of neutron kinetics and thermal-hydraulics in the core due to void and Doppler feedbacks. Furthermore, a sensitivity analysis regarding a delay time of control rod (CR) insertion initiation which was the most sensitive uncertainty to the results is also shown.


Author(s):  
Guo Chao ◽  
Liu Yu ◽  
He Hangxing ◽  
Liu Luguo ◽  
Wang Xiaoyu ◽  
...  

To solve three-dimensional kinetics problems, a high order nodal expansion method for hexagonal-z geometry (HONEM) and a Runge-Kutta (RK) method are respectively adopted to deal with the spatial and temporal problem. In the HONEM, 1D partially-integrated flux are approximated by using four order polynomial. The two order polynomial is adopted to the approximation of partially-integrated leakages. The Runge-Kutta method is adopted as a tool for dispersing the time term of 3D kinetics equation. A flux weighting method (FWM) is used for obtaining homogenized cross sections of mix node. The three-dimensional hexagonal kinetics code has been developed based on this method and tested with two benchmark problems of VVER which are the control rod ejection without any feedback and with simple adiabatic Doppler feedback. The results calculated by this code agree well with the reference results and the code is validated.


Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 531-536 ◽  
Author(s):  
Igor P. Królikowski ◽  
Jerzy Cetnar

Abstract Three-dimensional simulations of neutronics and thermal hydraulics of nuclear reactors are a tool used to design nuclear reactors. The coupling of MCB and FLUENT is presented, MCB allows to simulate neutronics, whereas FLUENT is computational fluid dynamics (CFD) code. The main purpose of the coupling is to exchange data such as temperature and power profile between both codes. Temperature required as an input parameter for neutronics is significant since cross sections of nuclear reactions depend on temperature. Temperature may be calculated in thermal hydraulics, but this analysis needs as an input the power profile, which is a result from neutronic simulations. Exchange of data between both analyses is required to solve this problem. The coupling is a better solution compared to the assumption of estimated values of the temperatures or the power profiles; therefore the coupled analysis was created. This analysis includes single transient neutronic simulation and several steady-state thermal simulations. The power profile is generated in defined points in time during the neutronic simulation for the thermal analysis to calculate temperature. The coupled simulation gives information about thermal behavior of the reactor, nuclear reactions in the core, and the fuel evolution in time. Results show that there is strong influence of neutronics on thermal hydraulics. This impact is stronger than the impact of thermal hydraulics on neutronics. Influence of the coupling on temperature and neutron multiplication factor is presented. The analysis has been performed for the ELECTRA reactor, which is lead-cooled fast reactor concept, where the coolant fl ow is generated only by natural convection


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
M. Pecchia ◽  
C. Parisi ◽  
F. D'Auria ◽  
O. Mazzantini

The geometrical complexity and the peculiarities of Atucha-2 PHWR require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Core models of Atucha-2 PHWR were developed using both MCNP5 and KENO-VI codes. The developed models were applied for calculating reactor criticality states at beginning of life, reactor cell constants, and control rods volumes. The last two applications were relevant for performing successive three dimensional neutron kinetic analyses since it was necessary to correctly evaluate the effect of each oblique control rod in each cell discretizing the reactor. These corrective factors were then applied to the cell cross sections calculated by the two-dimensional deterministic lattice physics code HELIOS. These results were implemented in the RELAP-3D model to perform safety analyses for the licensing process.


2021 ◽  
Vol 247 ◽  
pp. 03008
Author(s):  
Yuchao Xu ◽  
Jason Hou ◽  
Kostadin N. Ivanov

Accurate reactor core steady state safety analysis requires coupling between thermal-hydraulics and three dimensional multigroup pin by pin neutronics. Concerning the neutronics modeling, the Nodal Expansion Method (NEM) code is developed at North Carolina State University in the framework of high fidelity multiphysics coupling with CTF. NEM includes a simplified third-order Spherical Harmonic (SP3) solver. In this work, the solver has been improved by incorporating higher order scattering matrix library. The boundary conditions were corrected with one dimensional P3 theory and a consistent coupling coupling between zeroth- and second-order flux moments was established. Two methods for generating second order discontinuity factors (DFs) has ben developed, one based on the Generalized Equivalence Theory (GET) and one based on Parial Current Equivalence Theory (PCET). DFs were generated with three lattice sizes: single pin, 2 pins and assembly level. These developments were tested using the C5G7 benchmark. The results of the SP3 solver improvement, by using P2 and P3 scattering cross sections, show a 50% decrease in the eigenvalue (keff) prediction error compared to the reference transport solution. The GET DFs are applied in the C5G7 core pin by pin calculation and are compared with PCET DFs. The results show that PCET have a better performance in global results (eigenvalue). Concerning the different lattice sizes studies, the results show that DFs generated in smalll colorsets can improve local solutions. However, in order to reveal strong global trends, DFs should be generated in a larger corloset representative of the whole core. For the core calculations, DFs generated with the three colorsets together with an additional mixed type DFs were tested. For the mixed type, DFs generated from assembly size lattice were used for the internal interfaces and DFs generated from 2 pins size lattice were used for the assemblies boundary interfaces. These mixed DFs outperformed all the other configurations indicating that they manage to accomplish a satisfying compromise between global and local trends.


2006 ◽  
Vol 21 (2) ◽  
pp. 21-32 ◽  
Author(s):  
Hany Khater ◽  
Talal Abu-El-Maty ◽  
El-Din El-Morshdy

This paper describes the development of a dynamic model for the thermal-hydraulic analysis of MTR research reactors during a reactivity insertion accident. The model is formulated for coupling reactor kinetics with feedback reactivity and reactor core thermal-hydraulics. To represent the reactor core, two types of channels are considered, average and hot channels. The developed computer program is compiled and executed on a personal computer, using the FORTRAN language. The model is validated by safety-related benchmark calculations for MTR-TYPE reactors of IAEA 10 MW generic reactor for both slow and fast reactivity insertion transients. A good agreement is shown between the present model and the benchmark calculations. Then, the model is used for simulating the uncontrolled withdrawal of a control rod of an ETRR-2 reactor in transient with over power scram trip. The model results for ETRR-2 are analyzed and discussed.


Author(s):  
Alexander Grahn ◽  
Sören Kliem ◽  
Ulrich Rohde

This article presents the implementation of a coupling between the 3D neutron kinetic core model DYN3D and the commercial, general purpose computational fluid dynamics (CFD) software ANSYS-CFX. In the coupling approach, parts of the thermal hydraulic calculation are transferred to CFX for its better ability to simulate the three-dimensional coolant redistribution in the reactor core region. The calculation of the heat transfer from the fuel into the coolant remains with DYN3D, which incorporates well tested and validated heat transfer models for rod-type fuel elements. On the CFX side, the core region is modelled based on the porous body approach. The implementation of the code coupling is verified by comparing test case results with reference solutions of the DYN3D standalone version. Test cases cover mini and full core geometries, control rod movement and partial overcooling transients.


Author(s):  
Matthew J. Genge

Drawings, illustrations, and field sketches play an important role in Earth Science since they are used to record field observations, develop interpretations, and communicate results in reports and scientific publications. Drawing geology in the field furthermore facilitates observation and maximizes the value of fieldwork. Every geologist, whether a student, academic, professional, or amateur enthusiast, will benefit from the ability to draw geological features accurately. This book describes how and what to draw in geology. Essential drawing techniques, together with practical advice in creating high quality diagrams, are described the opening chapters. How to draw different types of geology, including faults, folds, metamorphic rocks, sedimentary rocks, igneous rocks, and fossils, are the subjects of separate chapters, and include descriptions of what are the important features to draw and describe. Different types of sketch, such as drawings of three-dimensional outcrops, landscapes, thin-sections, and hand-specimens of rocks, crystals, and minerals, are discussed. The methods used to create technical diagrams such as geological maps and cross-sections are also covered. Finally, modern techniques in the acquisition and recording of field data, including photogrammetry and aerial surveys, and digital methods of illustration, are the subject of the final chapter of the book. Throughout, worked examples of field sketches and illustrations are provided as well as descriptions of the common mistakes to be avoided.


Sign in / Sign up

Export Citation Format

Share Document