scholarly journals Development and Application of MCNP5 and KENO-VI Monte Carlo Models for the Atucha-2 PHWR Analysis

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
M. Pecchia ◽  
C. Parisi ◽  
F. D'Auria ◽  
O. Mazzantini

The geometrical complexity and the peculiarities of Atucha-2 PHWR require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Core models of Atucha-2 PHWR were developed using both MCNP5 and KENO-VI codes. The developed models were applied for calculating reactor criticality states at beginning of life, reactor cell constants, and control rods volumes. The last two applications were relevant for performing successive three dimensional neutron kinetic analyses since it was necessary to correctly evaluate the effect of each oblique control rod in each cell discretizing the reactor. These corrective factors were then applied to the cell cross sections calculated by the two-dimensional deterministic lattice physics code HELIOS. These results were implemented in the RELAP-3D model to perform safety analyses for the licensing process.

2016 ◽  
Vol 2 (2) ◽  
Author(s):  
Haykel Raouafi ◽  
Guy Marleau

The Canadian-SCWR is a heavy-water moderated supercritical light-water-cooled pressure tube reactor. It is fueled with CANada deuterium uranium (CANDU)-type bundles (62 elements) containing a mixture of thorium and plutonium oxides. Because the pressure tubes are vertical, the upper region of the core is occupied by the inlet and outlet headers render it nearly impossible to insert vertical control rods in the core from the top. Insertion of solid control devices from the bottom of the core is possible, but this option was initially rejected because it was judged impractical. The option that is proposed here is to use inclined control rods that are inserted from the side of the reactor and benefit from the gravitational pull exerted on them. The objective of this paper is to evaluate the neutronic performance of the proposed inclined control rods. To achieve this goal, we first develop a three-dimensional (3D) supercell model to simulate an inclined rod located between four vertical fuel cells. Simulations are performed with the SERPENT Monte Carlo code at five axial positions in the reactor to evaluate the effect of coolant temperature and density, which varies substantially with core height, on the reactivity worth of the control rods. The effect of modifying the inclination and spatial position of the control rod inside the supercell is then analyzed. Finally, we evaluate how boron poisoning of the moderator affects their effectiveness.


2014 ◽  
Vol 20 (2) ◽  
pp. 354-375
Author(s):  
Xiaolong Li ◽  
Jiansi Yang ◽  
Bingxuan Guo ◽  
Hua Liu ◽  
Jun Hua

Currently, for tunnels, the design centerline and design cross-section with time stamps are used for dynamic three-dimensional (3D) modeling. However, this approach cannot correctly reflect some qualities of tunneling or some special cases, such as landslips. Therefore, a dynamic 3D model of a tunnel based on spatiotemporal data from survey cross-sections is proposed in this paper. This model can not only playback the excavation process but also reflect qualities of a project typically missed. In this paper, a new conceptual model for dynamic 3D modeling of tunneling survey data is introduced. Some specific solutions are proposed using key corresponding technologies for coordinate transformation of cross-sections from linear engineering coordinates to global projection coordinates, data structure of files and database, and dynamic 3D modeling. A 3D tunnel TIN model was proposed using the optimized minimum direction angle algorithm. The last section implements the construction of a survey data collection, acquisition, and dynamic simulation system, which verifies the feasibility and practicality of this modeling method.


Author(s):  
Guo Chao ◽  
Liu Yu ◽  
He Hangxing ◽  
Liu Luguo ◽  
Wang Xiaoyu ◽  
...  

To solve three-dimensional kinetics problems, a high order nodal expansion method for hexagonal-z geometry (HONEM) and a Runge-Kutta (RK) method are respectively adopted to deal with the spatial and temporal problem. In the HONEM, 1D partially-integrated flux are approximated by using four order polynomial. The two order polynomial is adopted to the approximation of partially-integrated leakages. The Runge-Kutta method is adopted as a tool for dispersing the time term of 3D kinetics equation. A flux weighting method (FWM) is used for obtaining homogenized cross sections of mix node. The three-dimensional hexagonal kinetics code has been developed based on this method and tested with two benchmark problems of VVER which are the control rod ejection without any feedback and with simple adiabatic Doppler feedback. The results calculated by this code agree well with the reference results and the code is validated.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Xiao Meng ◽  
Li-xin Guo ◽  
Tian-qi Fan

Investigation of the electromagnetic (EM) scattering of time-varying overturning wave crests is a worthwhile endeavor. Overturning wave crest is one of the reasons of sea spike generation, which increases the probability of false radar alarms and reduces the performance of multitarget detection in the environment. A three-dimensional (3D) time-varying overturning wave crest model is presented in this paper; this 3D model is an improvement of the traditional two-dimensional (2D) time-varying overturning wave crest model. The integral equation method (IEM) was employed to investigate backward scattering radar cross sections (RCS) at various incident angles of the 3D overturning wave crest model. The super phenomenon, where the intensity of horizontal polarization scattering is greater than that of vertical polarization scattering, is an important feature of sea spikes. Simulation results demonstrate that super phenomena may occur in some time samples as variations in the overturning wave crest.


Kerntechnik ◽  
2021 ◽  
Vol 86 (2) ◽  
pp. 173-181
Author(s):  
R. M. Refeat ◽  
H. K. Louis

Abstract Criticality analysis of spent fuel assumes that the fuel material is unburned which means that it is in its most reactive condition. In fact, this is not the real situation for fuel as it is burned during reactor operation causing reduction in the reactivity. Considering the reduction in reactivity during spent fuel calculations is the Burn-up Credit concept (BUC). In addition, the control rods radial and axial positions have an effect on the reactivity which can be considered in the criticality safety analysis. This paper studies the effect of burnup and control rods (CRs) movement on reactivity and isotopes inventory. Calculations are carried out in two phases, first kinf is calculated for different burnup profiles with control rods are either fully withdrawn or fully inserted. In the second phase keff is calculated for different control rods insertion levels. For both phases, burnup calculations are performed for a UO2 assembly then multiplication factor calculations of burned UO2 assemblies in cold state are done. The burnup calculations are performed using MCNP6 code and ENDF/B-VII library for different burnup levels up to 45 GWd/tU. The results obtained can be taken in consideration in criticality safety analysis performed for the spent fuel to improve the economic efficiency for manufacture, storage and transportation of fissile materials.


Author(s):  
Raul Gonzalez ◽  
Alessandro Petruzzi ◽  
Francesco D’Auria ◽  
Oscar Mazzantini

Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and (e.g., oblique Control Rods, Positive Void Coefficient) required a developed and validated complex three dimensional (3D) neutron kinetics (NK) coupled thermal hydraulic (TH) model. Reactor shut-down is obtained by oblique CRs and, during accidental conditions, by an emergency shut-down system (JDJ) injecting a highly concentrated boron solution (boron clouds) in the moderator tank, the boron clouds reconstruction is obtained using a CFD (CFX) code calculation. A complete LBLOCA calculation implies the application of the RELAP5-3D© system code. Within the framework of the third Agreement “NA-SA – University of Pisa” a new RELAP5-3D control system for the boron injection system was developed and implemented in the validated coupled RELAP5-3D/NESTLE model of the Atucha 2 NPP. The aim of this activity is to find out the limiting case (maximum break area size) for the Peak Cladding Temperature for LOCAs under fixed boundary conditions.


2019 ◽  
Vol 7 (3A) ◽  
Author(s):  
Petri Forslund Guimaraes

The so-called “Control Blade History” (CBH) effect has always posed a serious challenge for any nodal core simulator in performing Boiling Water Reactor (BWR) core analyses. In this paper a method to handle such CBH effects is proposed based on the idea of interpolating lattice physics data between two extreme cases with regard to CBH, namely, the case with the control rod always inserted during depletion and the case with the control rod never inserted during fuel irradiation. In POLCA8, the latest upgrade of the Westinghouse BWR nodal core simulator POLCA, one applies the methodology to macroscopic cross sections, discontinuity factors, pin powers and detector constants. Overall, the proposed CBH model performs very well in terms of predictive accuracy of reactivity and pin powers although simultaneous presence of control rods (CRs) and burnable absorbers (BAs) still poses a challenge due to some observed interference of their impact on reactivity. Applying the CBH model for pin power reconstruction is particularly promising and provides excellent prediction accuracy in the vicinity of the CR and at the point of CR withdrawal being the most challenging and critical condition with regard to CBH.


2014 ◽  
Vol 94 ◽  
pp. 23-31 ◽  
Author(s):  
Kenji Konashi ◽  
Kunihiro Itoh ◽  
Tsugio Yokoyama ◽  
Michio Yamawaki

Metal hydrides have high hydrogen atom density, which is equivalent to that of liquid water. An application of the hafnium hydride has been investigated as a neutron absorber in the Fast Breeder Reactors (FBRs). Fast neutrons are efficiently moderated by hydrogen in Hf hydrides and are absorbed by Hf. Since three isotopes of Hf have large cross sections, increase in the life of control rod is considered by Hf hydride. Results of design study of the core with Hf hydride control rods shows that the long lived hafnium hydride control rod is feasible in the large sodium-cooled FBR. Results of irradiation test conducted in BOR-60 has demonstrated the integrity of the capsules during irradiation. Na bonded capsule has an advantage in confinement effect of hydrogen compared with He bonded one. An application of hydride technique to transmutation target of MA was also discussed. MA hydride target is able to enhance the transmutation rate in FBR.


2012 ◽  
Vol 715-716 ◽  
pp. 872-876 ◽  
Author(s):  
Abdelhak Ayad ◽  
Nadjet Rouag

Grain size is an important microstructural feature of materials; it contributes to its mechanical and physical properties. Quantitative information of three-dimensional topological evolution during the three-dimensional normal grain growth process is very rare. In this work, an isothermal Monte Carlo procedure is applied to study the kinetics of normal grain growth in three dimensions using the Monte Carlo technique. Monte Carlo simulation of the grain growth in polycrystalline materials employed maps the microstructure onto a discrete lattice. It consists in evaluation of potential energy of a lattice point. Therefore, the choice of the simulation parameters can affect the grain growth characteristics. We attempted to define specific simulation parameters for the three dimensional MC simulation of grain growth using theses lattices. The parameters include the choice of the lattice symmetry, the pixels number and the number of the nearest neighbor lattice sites in the calculation of the system energy. The goal of these computer simulations is to provide insights on the simulated structure and to analyze the grain growth kinetics for the 3D domain through several 2D cross-sections. Compact microstructures were developed and the first results show that the lattice symmetry and the neighbours number have a fundamental influence on the results of grain growth simulation. The saturation is too rapid with only the consideration of the 1st neighbours while acceptable similar evolutions are obtained for the 2nd or 3rd neighbours consideration. Grain size evolution obeys the power law kinetics for the 2D cross-section confirming the quasi-steady state of the 3D normal grain growth. The highest grain growth velocity and grain size were obtained at the cross-sections of the heart of microstructures. One other noted information is the existence of a minority of grains which continue to grow slowly leading up to the abnormal grain growth.


Sign in / Sign up

Export Citation Format

Share Document