Behavior of Advanced Space Lubricant Under Impact Load

Author(s):  
Nobuyoshi Ohno ◽  
Sobahan Mia ◽  
Soichiro Nagao ◽  
Yoshitaka Tamura ◽  
Shigeki Morita ◽  
...  

The squeeze film formation ability of advanced space lubricant is studied under impact load by falling bearing steel ball against a flat anvil made of mild steel. Two synthetic base oils (PFPE815Z and MAC2001A) and six greases (600EF, 601EF, 602EF, R2000, ML and MU) are investigated for the EHL dimple film thickness and a breakdown of lubricant film under elastic-plastic impact. The results showed that the viscosity of the base oil 815Z, which contains the acetal group, was decreased by the high shear rate under the EHL squeeze action. To prevention of surface damage under impact load, EHL dimple film thickness is shallow, and becomes as efficient as the grease of which oil film formation is high. From the viewpoint, MU-G and ML-G are good.

Author(s):  
M Kaneta ◽  
T Ogata ◽  
Y Takubo ◽  
M Naka

The effects of the thickener structure and base oil viscosity on the grease film formation in rolling point elastohydrodynamic contacts have been discussed on the basis of direct observation using the optical interferometry technique. Three different types of diurea greases without additives have been used as test greases. As the base oils three kinds of ether-type synthetic oils having similar molecular structures but different viscosities were used. The film behaviour of fresh greases has also been compared with that of the degraded greases. It has been found that the behaviour of grease elastohydrodynamic lubrication films is basically influenced by the thickener structure and base oil viscosity. The adhesion or deposition of the thickener on the contacting surfaces and oil starvation which affect film formation depend on the thickener structure, base oil viscosity and rolling speed. Furthermore, it has been suggested that there is an optimum temperature which gives a maximum film thickness according to the consistency of the grease.


Author(s):  
J. A. Greenwood ◽  
J. J. Kauzlarich

Mineral oils and synthetic lubricants that are thickened by polymers of large molecular weight are being promoted for automobiles as well as aircraft gas turbines. These multiweight lubricants are found to have a complicated Newtonian and non-Newtonian viscosity depending upon shear rate in the bearing. In general, polymer-thickened mineral oil lubricants show a first Newtonian behaviour at a low shear rate, shear-thinning non-Newtonian behaviour at a higher shear rate and a second Newtonian behaviour at a very high shear rate, with a second Newtonian viscosity approximately equal to the base oil viscosity. Because of high shear thinning in the inlet region of rolling element bearings, predicting the film thickness using the low shear rate first Newtonian viscosity can be in error, in particular examples, by a factor of ½ for mineral oil plus 4% methacrylate thickener and 1/7 for mineral oil plus 20% polybutene thickener. The case of naturally shear-thinning silicone fluids is analysed and it is shown that the elastohydrodynamic (EHD) film thickness is nearly the same for silicones with widely varying first Newtonian viscosity. A general EHD analysis for shear-thinning lubricants in pure rolling is presented and shown to agree with known special cases. A closed-form EHD equation for power law shear-thinning lubricants is derived, which gives very accurate results for a bearing where the inlet state of the rolling element falls in the region where the non-Newtonian viscosity is expected. A comparison with some published experimental results by Bair and Khonsari is presented.


Author(s):  
Hai Chao Liu ◽  
Bin Bin Zhang ◽  
Volker Schneider ◽  
C.H. Venner ◽  
G. Poll

Lubricant behaves non-Newtonian at high shear stress and high shear rate. The non-Newtonian shear behavior of oil such as shear-thinning, viscoelasticity, and limiting shear stress could have influences on almost all characteristics of an elastohydrodynamic lubrication (EHL) contact, that is, the central film thickness, the coefficient of friction, and the temperature rise in the lubricating film. For example, for lubricants of large molecular weight or of polymer blended ones, there can be inlet shear-thinning, which would reduce the EHL film thickness. For the EHL traction in a rolling/sliding EHL contact, it cannot be reasonably predicted without the consideration of non-Newtonian rheology. In EHL numerical studies, the non-Newtonian properties and the constitutive equations are expressed by the concept of generalized viscosity [Formula: see text], which can be either a function of shear rate [Formula: see text] or a function of shear stress [Formula: see text]. In this way, a non-Newtonian lubrication problem could be solved as a generalized Newtonian problem based on solvers for a Newtonian EHL problem. According to the function of the generalized viscosity [Formula: see text], numerical solutions can be classified into shear rate-based ones and shear stress-based ones. In this work, these two kinds of numerical solutions are revisited. And their efficiency is compared for a two-dimensional (2D) non-Newtonian point contact EHL problem (here 2D means non-Newtonian flow in both the x and y directions). Results show that the shear rate-based numerical solution has a higher efficiency than the shear stress-based one. The shear rate-based 2D generalized Newtonian method is more suitable to analyze multiple EHL contacts in angular contact ball bearings and gears with complex 2D flow and/or transient EHL lubrication problems.


Lubricants ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 19 ◽  
Author(s):  
Dennis Fischer ◽  
Helko Mues ◽  
Georg Jacobs ◽  
Andreas Stratmann

The service life of rolling bearings is significantly affected by the lubricating film formation in elastohydrodynamic (EHD) contacts. Grease lubricated EHD contacts show a film thickness decay from a characteristic rotational speed, which is referred to as starvation. Thus, the film thickness of grease lubricated contacts differs from that of oil lubricated contacts. However, the base oil properties under fully flooded conditions are commonly assumed to estimate the operating lifetime of grease lubricated bearings, which are usually not fully flooded. Hence, this assumption results in an overestimation of the film thickness for rotational speeds in the range of starvation, which can lead to uncertainties in the bearing design. At high rotational speeds, i.e., high over rolling frequencies, starvation is likely to occur, due to insufficient lubricant supply by replenishment behind the rolling element. Therefore, the focus of this contribution is to investigate the effect of over rolling frequency, and thus replenishment time, on the lubricating film formation in starved, grease lubricated EHD contacts. The film thickness measurements were performed on a ball-on-disc tribometer, which was extended by adding a second ball specimen in front of the measuring ball. By varying the angular distance between the two contacts, the lubricant displacement can be controlled, such that the effect of replenishment time on the film formation can be determined. These investigations should help to establish an advanced understanding of the mechanisms of grease lubrication, and encourage future work with a focus on developing a method to predict the film formation in grease lubricated EHD contacts.


Author(s):  
D Jalali-Vahid ◽  
H Rahnejat ◽  
Z. M. Jin

This paper presents numerical solution of isothermal elastohydrodynamic conjunction for concentrated contact of elastic bodies under the elliptical point contact condition. The solution includes the effect of squeeze-film motion that occurs under transient conditions due to the application of cyclic loads and/or oscillating motions in machine elements. It is shown that this time-dependent behaviour increases the load-carrying capacity of the contact which is largely responsible as a mechanism of lubricant film formation when the low speeds of entraining motion yield a low film thickness. An extrapolated oil-film thickness formula is also presented that can be employed under dynamic conditions.


2010 ◽  
Vol 10 (04) ◽  
pp. 621-641 ◽  
Author(s):  
YONGLIN SU ◽  
ZENGLIANG FU ◽  
PEIRAN YANG ◽  
CHENGTAO WANG

Lubrication plays an important role in reducing prosthetic wear. Time-dependent elastohydrodynamic lubrication simulation for total knee replacements was carried out under physiological loading and motions of a gait cycle. In numerical implement, a simplified ellipsoid-on-plane configuration was introduced to represent the artificial knee joint. Load and motions came from ISO standard, and both anterior–posterior displacement and flexion–extension rotation were considered to realize sliding and rolling motions of the knee. The governing Reynolds and elasticity equations were solved simultaneously using the multigrid technique. The elastic deformation was calculated based on the constrained column model. The results show that: (i) under the combination of entraining and squeeze-film actions throughout the walking cycle, the predicted central film thickness decreases during stance phase and keeps a relatively larger value in swing phase; (ii) high joint conformity helps to reduce hydrodynamic pressure and increase lubrication film thickness; (iii) the thickness of ultra-high molecular weight polyethylene layer and its properties also have influence on the lubrication performance in artificial knee replacement. Based on the aforementioned EHL analysis, potential surface damage of knee implants can be further evaluated.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
M. Selin Sunay ◽  
Onder Pekcan ◽  
Saziye Ugur

Steady-state fluorescence (SSF) technique in conjunction with UV-visible (UVV) technique and atomic force microscope (AFM) was used for studying film formation from TiO2covered nanosized polystyrene (PS) latex particles (320 nm). The effects of film thickness and TiO2content on the film formation and structure properties of PS/TiO2composites were studied. For this purpose, two different sets of PS films with thicknesses of 5 and 20 μm were prepared from pyrene-(P-) labeled PS particles and covered with various layers of TiO2using dip-coating method. These films were then annealed at elevated temperatures above glass transition temperature () of PS in the range of 100–280°C. Fluorescence emission intensity, from P and transmitted light intensity, were measured after each annealing step to monitor the stages of film formation. The results showed that film formation from PS latexes occurs on the top surface of PS/TiO2composites and thus developed independent of TiO2content for both film sets. But the surface morphology of the films was found to vary with both TiO2content and film thickness. After removal of PS, thin films provide a quite ordered porous structure while thick films showed nonporous structure.


Blood ◽  
2014 ◽  
Vol 123 (21) ◽  
pp. 3354-3363 ◽  
Author(s):  
Audrey Le Behot ◽  
Maxime Gauberti ◽  
Sara Martinez De Lizarrondo ◽  
Axel Montagne ◽  
Eloïse Lemarchand ◽  
...  

Key Points Following endothelial damage, platelet cross-linking during closure of the vessel lumen is mediated by GpIbα-VWF interactions. Disruption of GpIbα-VWF interactions restores vessel patency by specifically disaggregating the external layer of occlusive thrombi.


2011 ◽  
Vol 106 (12) ◽  
pp. 1062-1068 ◽  
Author(s):  
Naoki Tsuji ◽  
Yuko Honda ◽  
Chikako Kamisato ◽  
Yoshiyuki Morishima ◽  
Toshiro Shibano ◽  
...  

SummaryEdoxaban is an oral, direct factor Xa (FXa) inhibitor under late-phase clinical development. This study compared the antithrombotic efficacy of edoxaban with that of an indirect FXa inhibitor, fondaparinux, in in vivo venous and arterial thrombosis models and in ex vivo perfusion chamber thrombosis model under low and high shear rates in rats. Venous and arterial thrombi were induced by platinum wire insertion into the inferior vena cava and by application of FeCl3 to the carotid artery, respectively. The perfusion chamber thrombus was formed by blood perfusion into a collagen-coated capillary at 150 s-1 (low shear rate) and 1,600 s-1 (high shear rate). Effective doses of edoxaban that reduced thrombus formation by 50% (ED50) in venous and arterial thrombosis models were 0.076 and 0.093 mg/kg/h, respectively. In contrast, ED50 of fondaparinux in the arterial thrombosis model (>10 mg/kg/h) was markedly higher compared to ED50 in the venous thrombosis model (0.021 mg/kg/h). In the perfusion chamber thrombosis model, the ratio of ED50 under high shear rate (1.13 mg/kg/h) to that under low shear rate (0.63 mg/kg/h) for edoxaban was 1.9, whereas that for fondaparinux was more than 66. While the efficacy of fondaparinux markedly decreased in arterial thrombosis and in a high-shear state, edoxaban exerted consistent antithrombotic effects regardless of flow conditions. These results suggest that shear rate is a key factor in different antithrombotic effects between edoxaban and fondaparinux.


Sign in / Sign up

Export Citation Format

Share Document