In Situ Dynamics of Concentrated DNA Molecules in a Shear Flow

1999 ◽  
Author(s):  
Philip LeDuc ◽  
Bryan Pfister ◽  
Yangqing Xu ◽  
Denis Wirtz ◽  
Gang Bao

Abstract Polymer dynamics has been studied for many years because of its importance in many areas including materials, mechanics, biology, and medicine (Munk, 1989; Hoffman, et al., 1984). The dynamics of macromolecules in shear flow has been studied using light scattering and birefringence, but the effect of shear on the dynamics of individual polymers is not well understood (Doi & Edwards, 1986; de Gennes, 1991; de Gennes, 1997). Recently we studied the conformational changes of DNA molecules under shear in dilute concentration (LeDuc et al., 1998). Here we report the observations of the dynamics of fluorescently-labeled DNA molecules in a shear flow with increased concentration. Under a controlled shear flow, these flexible polymers exhibit various extended conformations, which range from parallel to perpendicular in orientation when compared to the flow direction. The amount of stretching that occurs in these experiments is found to be less than that for the dilute concentrations of the DNA solutions. Further, the stretching of the molecular solutions is found even at shear rates much smaller than the inverse of the relaxation time of the molecule. The in situ observations also reveal the effect of polymer concentration on the entanglement of macromolecules. These results provide insight into the behavior of individual and concentrated polymer molecules under shear and help further development of models for polymer dynamics (Perkins, et al., 1994; Smith, et al., 1992; Wirtz, 1995).

e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Fiorenza Azzurri ◽  
Paola Stagnaro ◽  
Lucia Conzatti ◽  
Dario Cavallo ◽  
Luca Repetto ◽  
...  

AbstractThe flow induced crystallization behaviour of a LDPE:PE-g-MA:D72T 90:9:1 nanocomposite has been investigated by in-situ Rheo-SALS technique and data have been compared with those obtained from a reference LDPE:PE-g-MA 90:9 sample. Rheo SALS results, confirming thermal analysis findings, indicate that under mild shear flow fields the organoclay exhibits a negligible nucleating effect. Both nucleation density and, as a consequence, crystallization rate, are not appreciably affected by the application of external flow field for both the examined systems, revealing that no evident synergic effects between the organoclay and the shear flow are present. On the other hand, Rheo SALS analysis indicates that the nanocomposite submitted to flow exhibits a higher level of crystal orientation. TEM morphological analyses support this observation suggesting that the orientation of the nanofiller along the flow direction templates the growth of oriented crystals.


2014 ◽  
Vol 217-218 ◽  
pp. 83-90
Author(s):  
Mehdi Reisi ◽  
Behzad Niroumand ◽  
Ebrahim Shirani

Morphological evolution of a transparent model succinonitrile (SCN) material during solidification was investigated in an apparatus resembling a shearing-disc viscometer. The in situ microscopic observations showed that fragmentation decreased the average particles size, but did not result in transition of dendritic to spherical morphology. At low shear rates, the degenerated dendrites and at high shear rates, the pseudo-cluster morphology was observed. It was revealed that coarsening has the most important effect on the final morphology of solid particles. The quantitative influences of shearing rate and intensity on the size and morphology of solid crystals were also discussed based on the measurements on the microstructures.


2021 ◽  
Vol 9 ◽  
Author(s):  
O. Korculanin ◽  
T. Kochetkova ◽  
M. P. Lettinga

Human blood is a shear-thinning fluid with a complex response that strongly depends on the red blood cell’s (RBC’s) ability to form aggregates, called rouleaux. Despite numerous investigations, microscopic understanding of the break up of RBC aggregates has not been fully elucidated. Here, we present a study of breaking up aggregates consisting of two RBCs (a doublet) during shear flow. We introduce the filamentous fd bacteriophage as a rod-like depletant agent with a very long-range interaction force, which can be tuned by the rod’s concentration. We visualize the structures while shearing by combining a home-build counter-rotating cone-plate shear cell with microscopy imaging. A diagram of dynamic states for shear rates versus depletant concentration shows regions of different flow responses and separation stages for the RBCs doublets. With increasing interaction forces, the full-contact flow states dominate, such as rolling and tumbling. We argue that the RBC doublets can only undergo separation during tumbling motion when the angle between the normal of the doublets with the flow direction is within a critical range. However, at sufficiently high shear rates, the time spent in the critical range becomes too short, such that the cells continue to tumble without separating.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 191
Author(s):  
Naser Hamedi ◽  
Lars-Göran Westerberg

In the present study, the flow of a fibre suspension in a channel containing a cylinder was numerically studied for a very low Reynolds number. Further, the model was validated against previous studies by observing the flexible fibres in the shear flow. The model was employed to simulate the rigid, semi-flexible, and fully flexible fibre particle in the flow past a single cylinder. Two different fibre lengths with various flexibilities were applied in the simulations, while the initial orientation angle to the flow direction was changed between 45° ≤ θ ≤ 75°. It was shown that the influence of the fibre orientation was more significant for the larger orientation angle. The results highlighted the influence of several factors affecting the fibre particle in the flow past the cylinder.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2315
Author(s):  
Ramin Hosseinnezhad

The shear-induced and cellulose-nanofiber nucleated crystallization of two novel aliphatic–aromatic copolyesters is outlined due to its significance for the in situ generation of biodegradable nanocomposites, which require the crystallization of nanofibrous sheared inclusions at higher temperatures. The shear-induced non-isothermal crystallization of two copolyesters, namely, poly(butylene adipate-co-succinate-co-glutarate-co-terephthalate) (PBASGT) and poly(butylene adipate-co-terephthalate) (PBAT), was studied following a light depolarization technique. To have a deep insight into the process, the effects of the shear rate, shear time, shearing temperature and cooling rate on the initiation, kinetics, growth and termination of crystals were investigated. Films of 60 μm were subjected to various shear rates (100–800 s−1) for different time intervals during cooling. The effects of the shearing time and increasing the shear rate were found to be an elevated crystallization temperature, increased nucleation density, reduced growth size of lamella stacks and decreased crystallization time. Due to the boosted nucleation sites, the nuclei impinged with each other quickly and growth was hindered. The effect of the cooling rate was more significant at lower shear rates. Shearing the samples at lower temperatures, but still above the nominal melting point, further shifted the non-isothermal crystallization to higher temperatures. As a result of cellulose nanofibers’ presence, the crystallization of PBAT, analyzed by DSC, was shifted to higher temperatures.


2004 ◽  
Vol 37 (18) ◽  
pp. 7064-7064
Author(s):  
Yumi Matsumiya ◽  
Nitash P. Balsara ◽  
John B. Kerr ◽  
Tadashi Inoue ◽  
Hiroshi Watanabe

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yusuke Hiejima ◽  
Takumitsu Kida ◽  
Koh-hei Nitta

AbstractIn situ Raman spectroscopy is applied for polyethylene solid under various environments to elucidate the morphological and conformational changes. The trans conformation retains up to higher temperature for high-density polyethylene, reflecting higher stability of the orthorhombic crystals composed of stacked trans chains. It is suggested that the conversion of the non-crystalline trans chains to the crystalline phase is the microscopic origin of thermal history in the crystallinity, whereas the transformation between the trans and gauche conformers is practically in thermal equilibrium. Microscopic and dynamic mechanism of deformation during uniaxial stretching is investigated for the molecular orientation and the microscopic load sharing on the crystalline and amorphous chains. Lower crystallinity results in smoother and higher orientation toward the stretching direction, as well as higher load on the amorphous chains, during tensile elongation.


1978 ◽  
Vol 86 (1) ◽  
pp. 49-65 ◽  
Author(s):  
R. C. Ackerberg ◽  
R. D. Patel ◽  
S. K. Gupta

The problem of heat transfer (or mass transfer at low transfer rates) to a strip of finite length in a uniform shear flow is considered. For small values of the Péclet number (based on wall shear rate and strip length), diffusion in the flow direction cannot be neglected as in the classical Leveque solution. The mathematical problem is solved by the method of matched asymptotic expansions and expressions for the local and overall dimensionless heat-transfer rate from the strip are found. Experimental data on wall mass-transfer rates in a tube at small Péclet numbers have been obtained by the well-known limiting-current method using potassium ferrocyanide and potassium ferricyanide in sodium hydroxide solution. The Schmidt number is large, so that a uniform shear flow can be assumed near the wall. Experimental results are compared with our theoretical predictions and the work of others, and the agreement is found to be excellent.


Sign in / Sign up

Export Citation Format

Share Document