Available Energy: I. Gibbs Revisited; II. Gibbs Extended

1999 ◽  
Author(s):  
Richard A. Gaggioli ◽  
David H. Richardson ◽  
Anthony J. Bowman ◽  
David M. Paulus

Abstract The concept of available energy, as defined by Gibbs (1873b) is revisited. He gave representations of available energy for two circumstances. The first was the available energy of a “body,” for the case when a body, alone, is in a nonequilibrium condition and therefore has energy available. In turn, he presented the available energy of “the body and medium,” for the energy which is available because a body is not in equilibrium with some arbitrarily specified medium. Gibbs’ representations were graphical. Since Gibbs, representations with formulas have been developed and are common, for the “available energy of body and medium.” Gaggioli (1998a, b) has developed formulas which are more general, to represent “the available energy of the body (alone)” and to assign an exergy to subsystems of the body as a measure of each sub-system’s contribution to the available energy. In contrast to the available energy, exergy is an additive property, so that balance equations can be written. And the formulas are independent from any “medium,” which is important both theoretically and practically — because of its relevance to proper selection of “the dead state.” These issues are discussed and extended, after reviewing Gibbs development of available energy and additional concepts which he introduced, such as “available vacuum” and “capacity for entropy.” It is argued that these “availabililty” and “capacity” concepts are all equivalent to one another. In turn, because of interconvertability, it is seen that available energy is something more fundamental than “maximum useful work.” Furthermore, it is illustrated that available energy, equilibrium and stability, and thermostatic property relations are relative, to “constraints.”


2002 ◽  
Vol 124 (2) ◽  
pp. 110-115 ◽  
Author(s):  
Richard A. Gaggioli ◽  
David M. Paulus,

Since Gibbs, representations with formulas have been developed and are common, for the “available energy of body and medium.” Gaggioli has developed formulas which are more general, to represent “the available energy of the body (alone)” and to assign an exergy to subsystems of the body as a measure of each subsystem’s contribution to the available energy. In contrast to the available energy, exergy is an additive property, so that balance equations can be written. Moreover, the formulas are independent from any “medium,” which is important both theoretically and practically—because of its relevance to proper selection of “the dead state.” In Part II, these issues are discussed and extended. In the context of Gibbs’ “available energy of the body,” Gaggioli’s development of exergy for subsystems of the body without any reference to a “medium” are reviewed. It is illustrated that the concept of “constraints” underlies available energy, equilibrium and stability, and thermostatic property relations. Furthermore, it is argued that the “availability” and “capacity” concepts of Gibbs are all equivalent to each other. In turn, because of interconvertability, it is shown that available energy is something more fundamental than “maximum useful work.”



2002 ◽  
Vol 124 (2) ◽  
pp. 105-109 ◽  
Author(s):  
Richard A. Gaggioli ◽  
David H. Richardson ◽  
Anthony J. Bowman

The concept of available energy, as defined by Gibbs is revisited. Being more general, this concept of available energy differs from that referred to commonly by the same name, or as “exergy” or “availability.” He gave representations of available energy for two circumstances. The first was the available energy of a “body,” for the case when a body, alone, is in a nonequilibrium condition and therefore has energy available. In turn, he presented the available energy of “the body and medium,” for the energy that is available because a body is not in equilibrium with some arbitrarily specified medium or “reference environment.” Gibbs’ did not present formulas to represent available energy. His representations were verbal descriptions regarding surfaces, curves and lines. Although his verbiage was augmented by some graphics, visualization of the geometrical entities he described depended largely on the imagination of the reader. In Part I, we take advantage of modern graphics software to illustrate more vividly not only the available energy he described verbally but also his interesting concepts of “available vacuum” and “capacity for entropy.” We argue that all of these concepts are equivalent. Since Gibbs, representations with formulas have been developed and are common for the “available energy of body and medium.” Gaggioli has developed formulas which are more general, to represent “the available energy of the body (alone)” and to assign an exergy to subsystems of the body as a measure of each subsystem’s contribution to the available energy. In contrast to the available energy, exergy is an additive property, so that balance equations can be written. This exergy is independent of any “reference environment,” which is important both theoretically and practically because of its relevance to proper selection of “the dead state.” In those special cases when the dead state is one in equilibrium with a “reference environment,” this more generalized exergy encompasses that concept called (today) exergy in textbooks and journals.





2017 ◽  
Vol 10 (1) ◽  
pp. 32-52
Author(s):  
Bonnie White

In 1917 the British government began making plans for post-war adjustments to the economy, which included the migration of surplus women to the dominions. The Society for the Overseas Settlement of British Women was established in 1920 to facilitate the migration of female workers to the dominions. Earlier studies have argued that overseas emigration efforts purposefully directed women into domestic service as surplus commodities, thus alleviating the female ‘surplus’ and easing economic hardships of the post-war period. This article argues that as Publicity Officer for the SOSBW, Meriel Talbot targeted women she believed would be ideal candidates for emigration, including former members of the Women's Land Army and affiliated groups. With the proper selection of female migrants, Talbot sought to expand work opportunities for women in the dominions beyond domestic service, while reducing the female surplus at home and servicing the connection between state and empire. Dominion authorities, whose demands for migrant labour vacillated between agricultural workers during the war years and domestic servants after 1920, disapproved of Talbot's efforts to migrate women for work in agriculture. Divergent policies led to the early failure of the SOSBW in 1923.



EDUSAINS ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 166-175
Author(s):  
Gia Juniar Nur Wahidah ◽  
Sjaeful Anwar

Abstract This research aims to produce science teaching materials in junior level with Energy in The Body as the theme using Four Steps Teaching Material Development  (4STMD). The material is presented in an integrated way so that students can  think holistically and contextually. The method used in this study is Research and Development. In this R&D methods is used 4STMD. There are four steps done on the development of teaching materials, the selection step, structuring step, characterization, and didactic reduction. Selection step includes the selection of indicators in accordance with the demands of the curriculum which is then developed with the selection of concepts and values that are integrated with the concept of science. Structuring step includes make macro structures, concept maps, and multiple representations. Characterization's step includes preparation instruments, then  trial to students to identify difficult concepts. The last, didactic reduction was done by neglect and the annotations in the form of sketches.The test results readability aspect instructional materials lead to the conclusion that by determining the main idea, the legibility of teaching materials reached 67%, with moderate readability criteria. Test results of feasibility aspects based on the results of questionnaires to the 11 teachers lead to the conclusion that the overall, level of eligibility teaching materials reached 91% with the eligibility criteria well. Keywords: teaching materials; energy; 4STMD Abstrak Penelitian ini bertujuan untuk menghasilkan bahan ajar IPA SMP pada tema Energi dalam Tubuh menggunakan metode Four Steps Teaching Material Development (4STMD). Materi disajikan secara terpadu sehingga memacu siswa untuk berpikir secara holistik dan kontekstual. Metode penelitian yang digunakan pada penelitian ini adalah metode penelitian dan pengembangan. Dalam penelitian dan pengembangan yang ini, digunakan metode Four Steps Teaching Material Development (4STMD). Terdapat empat tahap yang dilakukan pada pengembangan bahan ajar, yakni tahap seleksi, strukturisasi, karakterisasi, dan reduksi didaktik. Tahap seleksi meliputi pemilihan indikator yang sesuai dengan tuntutan kurikulum yang kemudian dikembangkan dengan pemilihan konsep dan nilai yang diintegrasikan dengan konsep IPA. Tahap strukturisasi meliputi pembuatan struktur makro, peta konsep, dan multipel representasi dari materi. Tahap karakterisasi meliputi penyusunan instrumen karakterisasi, kemudian uji coba kepada siswa untuk mengidentifikasi konsep sulit. Tahap terakhir, yaitu reduksi didaktik konsep terhadap konsep sulit. Reduksi didaktik yang dilakukan berupa pengabaian dan penggunaan penjelasan berupa sketsa. Hasil uji aspek keterbacaan bahan ajar menghasilkan kesimpulan bahwa berdasarkan penentuan ide pokok, keterbacaan bahan ajar mencapai 67%, dengan kriteria keterbacaan tinggi. Hasil uji aspek kelayakan berdasarkan hasil angket terhadap 11 orang guru menghasilkan kesimpulan bahwa secara keseluruhan tingkat kelayakan bahan ajar mencapai 91% dengan kriteria kelayakan baik sekali. Kata Kunci: bahan ajar; energi; 4STMD  Permalink/DOI: http://dx.doi.org/10.15408/es.v8i2.2039  



Author(s):  
D. Josephine Selvarani Ruth

AbstractNickel Titanium Naval Ordinance Laboratory (NiTiNOL) is widely called as a shape memory alloy (SMA), a class of nonlinear smart material inherited with the functionally programmed property of varying electrical resistance during the transformation enabling to be positioned as a sensing element. The major challenge to instrument the SMA wires is to suppress the wires’ nonlinearity by proper selection of two important factors. The first factor is influenced by the mechanical biasing element and the other is to identify the sensing current for the sensing device (SMA wires + biasing). This paper focuses on developing SMA wires for sensing in different orientation types and configurations by removing the non-linearity in the system’s output by introducing inverse hysteresis to the wires through the passive mechanical element.



2021 ◽  
pp. 105971232199468
Author(s):  
Paolo Pagliuca ◽  
Stefano Nolfi

We introduce a method that permits to co-evolve the body and the control properties of robots. It can be used to adapt the morphological traits of robots with a hand-designed morphological bauplan or to evolve the morphological bauplan as well. Our results indicate that robots with co-adapted body and control traits outperform robots with fixed hand-designed morphologies. Interestingly, the advantage is not due to the selection of better morphologies but rather to the mutual scaffolding process that results from the possibility to co-adapt the morphological traits to the control traits and vice versa. Our results also demonstrate that morphological variations do not necessarily have destructive effects on robots’ skills.



2021 ◽  
Vol 9 (6) ◽  
pp. 634
Author(s):  
Euichi Hirose ◽  
Noburu Sensui

Ascidians are marine sessile chordates that comprise one of the major benthic animal groups in marine ecosystems. They sometimes cause biofouling problems on artificial structures underwater, and non-indigenous, invasive ascidian species can potentially and seriously alter native faunal communities. Ascidian larvae are usually tadpole-shaped, negatively phototactic, and adhere on substrates by secreting a glue from their adhesive organs. Although larvae often prefer hydrophobic surfaces, such as a silicone rubber, for settlement, hydrophobic materials are often used to reduce occurrence of fouling organisms on artificial structures. This inconsistency may indicate that an attractive surface for larvae is not always suitable for settlement. Micro-scale structures or roughness may enhance the settlement of ascidian larvae, but settlement is significantly reduced by a nano-scale nipple array (or moth-eye structure), suggesting functional properties of similar structures found on the body surfaces of various invertebrates. The substrate preferences of larvae should be one of the important bases in considering measures against biofouling, and this review also discusses the potential uses of materials to safely reduce the impacts of invasive species.



2016 ◽  
Vol 43 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Catherine Kellogg

Judith Butler and Catherine Malabou’s recent exchange, ‘You Be My Body for Me: Body, Shape and Plasticity in Hegel’s Phenomenology of Spirit’, is remarkable because in their rereading of Hegel’s famous lord and bondsman parable, rather than focusing on recognition, work, or even desire, Butler and Malabou each wonder about how Hegel contributes to a new way of thinking about ‘having’ a body and how coming to ‘be’ a body necessarily involves a kind of dispossession. Butler and Malabou’s reading of Hegel is congruent with a current shift on the left away from a liberal politics of recognition to a (post-)Marxist analytic of dispossession: a move, in other words, away from liberal ‘solutions’ of redistribution – of either goods or recognition – towards thinking through issues of settler colonialism, forced migration and empire. Butler and Malabou’s piece points towards the insight that Hegel’s parable must be thought in terms of the political history of possessive individualism, and so in terms of the history of juridically defined property relations; the history of regarding both the body and the land as property. The ‘two valences’ of dispossession, in other words, refers in fact to a logic of property relations, one between those who ‘have’ property (either land or the property of their own bodies) and those who are juridically defined as propertyless.



1997 ◽  
Vol 119 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Kunsoo Huh ◽  
Jeffrey L. Stein

Because the behavior of the condition number can have highly steep and multi-modal structure, optimal control and monitoring problems based on the condition number cannot be easily solved. In this paper, a minimization problem is formulated for κ2(P), the condition number of an eigensystem (P) of a matrix in terms of the L2 norm. A new non-normality measure is shown to exist that guarantees small values for the condition number. In addition, this measure can be minimized by proper selection of controller and observer gains. Application to the design of well-conditioned controller and observer-based monitors is illustrated.



Sign in / Sign up

Export Citation Format

Share Document