scholarly journals A New Statistical Biomechanics Modeling of Physical and Biochemical Bone Strength Parameters

2000 ◽  
Author(s):  
Alfred B. O. Soboyejo ◽  
Karl E. Nestor

Abstract New multiparameter biomechanics models are developed in this work for the characterization of bone strengths in broiler chickens and turkeys, as functions of the major physical and biochemical parameters, which can contribute to mechanical properties of bone strengths in these birds, under good management practices. Theoretical and experimental methods have been developed in this study to model bone strength as functions of (a) the physical parameters only and (b) the biochemical parameters only, which can affect bone strength. The choice of any particular methodology will depend on the availability of either the physical or biochemical parameters, which can be obtained from experimental data. Possible useful practical applications of the statistical biomechanics principles developed in this technical paper, particularly in the field of bone strength enhancement in turkeys and broiler chickens will be discussed. In view of the problems described, the major objectives of the present study are as follows: (1) To develop new multiparameter biomechanics models for the characterization of bone strengths in turkeys and broiler chickens as functions of the major physical only, or biomechanical parameters only, which can contribute to bone strength in these birds, under conditions of good management of these birds. This study will consider only the compressive buckling as the mode of structural failure in the cellular material of the bone. (2) To highlight briefly the possible practical applications of the statistical biomechanics principles, which will be developed in this study to the genetic improvement of bone strengths in broiler chickens and turkeys.

Author(s):  
Bradley L. Thiel ◽  
Chan Han R. P. ◽  
Kurosky L. C. Hutter ◽  
I. A. Aksay ◽  
Mehmet Sarikaya

The identification of extraneous phases is important in understanding of high Tc superconducting oxides. The spectroscopic techniques commonly used in determining the origin of superconductivity (such as RAMAN, XPS, AES, and EXAFS) are surface-sensitive. Hence a grain boundary phase several nanometers thick could produce irrelevant spectroscopic results and cause erroneous conclusions. The intergranular phases present a major technological consideration for practical applications. In this communication we report the identification of a Cu2O grain boundary phase which forms during the sintering of YBa2Cu3O7-x (1:2:3 compound).Samples are prepared using a mixture of Y2O3. CuO, and BaO2 powders dispersed in ethanol for complete mixing. The pellets pressed at 20,000 psi are heated to 950°C at a rate of 5°C per min, held for 1 hr, and cooled at 1°C per min to room temperature. The samples show a Tc of 91K with a transition width of 2K. In order to prevent damage, a low temperature stage is used in milling to prepare thin foils which are then observed, using a liquid nitrogen holder, in a Philips 430T at 300 kV.


Author(s):  
Jafar Javadpour ◽  
Bradley L. Thiel ◽  
Sarikaya Mehmet ◽  
Ilhan A. Aksay

Practical applications of bulk YBa2Cu3O7−x materials have been limited because of their inadequate critical current density (jc) and poor mechanical properties. Several recent reports have indicated that the addition of Ag to the YBa2Cu3O7−x system is beneficial in improving both mechanical and superconducting properties. However, detailed studies concerning the effect of Ag on the microstructural development of the cermet system have been lacking. Here, we present some observations on the microstructural evolution in the YBa2Cu3O7−x/Ag composite system.The composite samples were prepared by mixing various amounts (2.5 - 50 wt%) AgNO3 in the YBa2Cu3O7−x nitrate precursor solution. These solutions were then spray dried and the resulting powders were either cold pressed or tape cast. The microstructures of the sintered samples were analyzed using SEM (Philips 515) and an analytical TEM (Philips 430T).The SEM micrographs of the compacts with 2.5 and 50 wt% Ag addition sintered at 915°C (below the melting point of Ag) for 1 h in air are displayed in Figs. 1 and 2, respectively.


EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Jason Ferrell ◽  
Gregory MacDonald ◽  
Pratap Devkota

Successful weed control in small grains involves using good management practices in all phases of production. In Florida, winter weeds compete with small grains for moisture, nutrients, and light, with the greatest amount of competition occurring during the first six to eight weeks after planting. Weeds also cause harvest problems the following spring when the small grain is mature. This 4-page publication discusses crop competition, knowing your weeds, and chemical control. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Pratap Devkota

Successful weed control in peanuts involves use of good management practices in all phases of peanut production. This 11-page document lists herbicide products registered for use in Florida peanut production, their mode of actions group, application rate per acre and per season, and reentry interval. It also discusses the performance of these herbicides on several weeds under Florida conditions. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2274
Author(s):  
Haley E. Rymut ◽  
Laurie A. Rund ◽  
Courtni R. Bolt ◽  
Maria B. Villamil ◽  
Bruce R. Southey ◽  
...  

Weaning stress can elicit changes in the metabolic, hormone and immune systems of pigs and interact with prolonged disruptions stemming from maternal immune activation (MIA) during gestation. The present study advances the characterization of the combined effects of weaning stress and MIA on blood chemistry, immune and hormone indicators that inform on the health of pigs. Three-week-old female and male offspring of control gilts or gilts infected with the porcine reproductive and respiratory syndrome virus were allocated to weaned or nursed groups. The anion gap and bilirubin profiles suggest that MIA enhances tolerance to the effects of weaning stress. Interleukin 1 beta and interleukin 2 were highest among weaned MIA females, and cortisol was higher among weaned relative to nursed pigs across sexes. Canonical discriminant analysis demonstrated that weaned and nursed pigs have distinct chemistry profiles, whereas MIA and control pigs have distinct cytokine profiles. The results from this study can guide management practices that recognize the effects of the interaction between MIA and weaning stress on the performance and health of pigs.


2021 ◽  
Vol 11 (13) ◽  
pp. 5924
Author(s):  
Elisa Levi ◽  
Simona Sgarbi ◽  
Edoardo Alessio Piana

From a circular economy perspective, the acoustic characterization of steelwork by-products is a topic worth investigating, especially because little or no literature can be found on this subject. The possibility to reuse and add value to a large amount of this kind of waste material can lead to significant economic and environmental benefits. Once properly analyzed and optimized, these by-products can become a valuable alternative to conventional materials for noise control applications. The main acoustic properties of these materials can be investigated by means of a four-microphone impedance tube. Through an inverse technique, it is then possible to derive some non-acoustic properties of interest, useful to physically characterize the structure of the materials. The inverse method adopted in this paper is founded on the Johnson–Champoux–Allard model and uses a standard minimization procedure based on the difference between the sound absorption coefficients obtained experimentally and predicted by the Johnson–Champoux–Allard model. The results obtained are consistent with other literature data for similar materials. The knowledge of the physical parameters retrieved applying this technique (porosity, airflow resistivity, tortuosity, viscous and thermal characteristic length) is fundamental for the acoustic optimization of the porous materials in the case of future applications.


2021 ◽  
pp. 101150 ◽  
Author(s):  
Francesco Prisco ◽  
Davide De Biase ◽  
Giuseppe Piegari ◽  
Ilaria D'Aquino ◽  
Adriano Lama ◽  
...  

2000 ◽  
Vol 28 ◽  
pp. 53-62 ◽  
Author(s):  
R.K. Pundir ◽  
G. Sahana ◽  
N. K. Navani ◽  
P.K. Jain ◽  
D.V. Singh ◽  
...  

SummaryMehsana buffalo is distributed in Mehsana, Banaskantha and Sabarkantha districts of North Gujarat in India. The animals are reared for milk production. The management practices in the breeding tract were studied. The physical, production and reproductive characters were recorded. The Dudhsagar Research and Development Association located in Mehsana district has undertaken breed improvement programmes in farmers'herds by running field progeny testing and providing other animal husbandry services like artificial insemination, health coverage, etc. This has resultedin the improvement in the reproductive performance as is evident from the decreasein the average first service period by 74 days and the average first calving interval by 103 days from 1989 to 1997. Microsatellite DNA marker analysis was carried out on 25 Mehsana buffalo DNA samples using seven markers for genetic characterization of the breed. Number of alleles at different loci ranged from four to seven and heterozygosity ranged from 0.40 to 0.92.


Sign in / Sign up

Export Citation Format

Share Document