Failure Prediction of Flip Chip Packages Using Finite Element Technique

Author(s):  
Abm Hasan ◽  
H. Mahfuz ◽  
M. Saha ◽  
S. Jeelani

Flip-chip electronic package undergoes thermal loading during its curing process and operational life. Due to the thermal expansion coefficient (CTE) mismatch of various components, the flip-chip assembly experiences various types of thermally induced stresses and strains. Experimental measurement of these stresses and strains is extremely tedious and rigorous due to the physical limitations in the dimensions of the flip-chip assembly. While experiments provide accurate assessment of stresses and strains at certain locations, a parallel finite element (FE) analysis and analytical study can complementarily determine the displacement, strain and stress fields over the entire region of the flip-chip assembly. Such combination of experimental, finite element and analytical studies are ideal to yield a successful stress analysis of the flip-chip assembly under the various loading conditions. In this study, a two-dimensional finite element model of the flip-chip consisting of the silicon chip, underfill, solder ball, copper pad, solder mask and substrate has been developed. Various stress components under thermal loading condition ranging from −40°C to 150°C have been determined using both the finite element and analytical methods. Stresses such as (σ11, σ12, ε12 etc. are extracted and analyzed for the individual components as well as the entire assembly, and the weakest positions of the flip-chip have been discovered. Detailed description of FE modeling is presented and the different failure modes of chip assembly are discussed.

2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2011 ◽  
Vol 306-307 ◽  
pp. 733-737
Author(s):  
Xu Dan Dang ◽  
Xin Li Wang ◽  
Hong Song Zhang ◽  
Jun Xiao

In this article the finite element software was used to analyse the values for compressive strength of X-cor sandwich. During the analysis, the failure criteria and materials stiffness degradation rules of failure mechanisms were proposed. The failure processes and failure modes were also clarified. In the finite element model we used the distributions of failure elements to simulate the failure processes. Meanwhile the failure mechanisms of X-cor sandwich were explained. The finite element analysis indicates that the resin regions of Z-pin tips fail firstly and the Z-pins fail secondly. The dominant failure mode is the Z-pin elastic buckling and the propagation paths of failure elements are dispersive. Through contrast the finite element values and test results are consistent well and the error range is -7.6%~9.5%. Therefore the failure criteria and stiffness degradation rules are reasonable and the model can be used to predict the compressive strength of X-cor sandwich.


Author(s):  
Ying Yue ◽  
Walter Villanueva ◽  
Hongdi Wang ◽  
Dingqu Wang

Abstract Vessel penetrations are important features of both pressurized water reactors and boiling water reactors. The thermal and structural behaviour of instrumentation guide tubes (IGTs) and control rod guide tubes (CRGTs) during a severe accident is vital in the assessment of the structure integrity of the reactor pressure vessel. Penetrations may fail due to welding failure, nozzle rupture, melt-through, etc. It is thus important to assess the failure mechanisms of penetrations with sufficient details. The objective of this paper is to assess the timing and failure modes of IGTs at the lower head during a severe accident in a Nordic boiling water reactor. In this study, a three-dimensional local finite element model was established using Ansys Mechanical that includes the vessel wall, the nozzle, and the weld joint. The thermo-mechanical loads of the finite element model were based on MELCOR results of a station blackout accident (SBO) combined with a large-break loss-of-coolant accident (LBLOCA) including an external vessel cooling by water as a severe accident management strategy. Given the temperature, creep strain, elastic strain, plastic strain, stress and displacement from the ANSYS simulations, the results showed the timing and failure modes of IGTs. Failure of the IGT penetration by nozzle creep is found to be the dominant failure mode of the vessel. However, it was also found that the IGT is clamped by the flow limiter before the nozzle creep, which means that IGT ejection is unlikely.


Author(s):  
Shunji Kataoka ◽  
Takuya Sato

Creep-fatigue damage is one of the dominant failure modes for pressure vessels and piping used at elevated temperatures. In the design of these components the inelastic behavior should be estimated accurately. An inelastic finite element analysis is sometimes employed to predict the creep behavior. However, this analysis needs complicated procedures and many data that depend on the material. Therefore the design is often based on a simplified inelastic analysis based on the elastic analysis result, as described in current design codes. A new, simplified method, named, Stress Redistribution Locus (SRL) method, was proposed in order to simplify the analysis procedure and obtain reasonable results. This method utilizes a unique estimation curve in a normalized stress-strain diagram which can be drawn regardless of the magnitude of thermal loading and constitutive equations of the materials. However, the mechanism of SRL has not been fully investigated. This paper presents results of the parametric inelastic finite element analyses performed in order to investigate the mechanism of SRL around a structural discontinuity, like a shell-skirt intersection, subjected to combined secondary bending stress and peak stress. This investigation showed that SRL comprises a redistribution of the peak and secondary stress components and that although these two components exhibit independent redistribution behavior, they are related to each other.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 591
Author(s):  
Karel A. van Laarhoven ◽  
Bas A. Wols

The failure of joints plays an important role in the overall performance of mains. One of the prevalent failure modes at polyvinyl chloride (PVC) joints is the rupture of pipe or joint, which may occur due to high angular deflection of the pipe with respect to the joint, caused by differential soil settlement. The present paper reports the construction and use of a finite element model to determine the maximum angular deflection of a variety of PVC joints in different loading situations. The resulting acceptable deflections vary between 3° and 8° per side, which differs significantly from installation guidelines. The results will support drinking water companies in substantiating the prioritization of maintenance and inspection.


Author(s):  
Mahdi A. Allam ◽  
Andre Bazergui ◽  
Luc Marchand ◽  
Michel Derenne

Service reliability and durability of tubular heat exchangers and steam generators are much dependent on the proper response of the tube-to-tubesheet joints to the operating conditions. In this paper a 2-D axisymmetric finite element model is proposed and compared to a 3-D finite element solution for the purpose of predicting the temperature effect on the residual contact pressure and maximum tensile residual stresses of such joints. A parametric study using the finite element results shows that, although thermal loading and temperature cycling have a negligible effect on the maximum tensile residual stresses, the room-temperature initial residual contact pressure may be completely relieved following the initiation of plastic deformation in either the tube or the tubesheet during thermal loading. A comparison between the results of the proposed finite element model and those obtained from the literature shows good agreement. A simplified analytical approach, which may be used for the design of tube-to-tubesheet joints, is also proposed to predict the joint behavior at the operating conditions.


2005 ◽  
Vol 127 (4) ◽  
pp. 446-451 ◽  
Author(s):  
Ming-Hwa R. Jen ◽  
Lee-Cheng Liu ◽  
Jenq-Dah Wu

The work is aimed to investigate the mechanical responses of bare dies of the combination of pure tin∕Al–NiV–Cu Under bump metallization (UBM) and packages of pure tin∕Al–NiV–Cu UBM/substrate of standard thickness of aurum. The mechanical properties under multiple reflow and long term high temperature storage test (HTST) tests at different temperatures and the operational life were obtained. A scanning electron microscope was used to observe the growth of IMC and the failure modes in order to realize their reaction and connection. From the empirical results of bare dies, the delamination between IMC and die was observed due to the tests at 260 °C multiple reflow. However, their mechanical properties were not affected. Nevertheless, the bump shear strength of bare dies were decreased by HTST tests. In package, all the results of mechanical properties by multiple reflow test and HTST test were significantly lowered. It was shown that the adhesion between bump and die reduced obviously as tests going on. As for high temperature operational life test in the conditions of 150 °C and 320 mA (5040A∕cm2), the average stable service time of the package was 892 h, and the average ultimate service time of the package was 1053 h.


1991 ◽  
Vol 34 (1) ◽  
pp. 25-31
Author(s):  
Jack Roberts ◽  
Debra Stillo

A printed wiring board (PWB) with electronic components has been modeled using the finite element technique and compared with the same PWB experimentally tested in a chassis during a 2 hr random vibration test. Accelerometers were attached to the PWB in locations where nodes existed in the finite element model (FEM). The FEM predicted the first natural frequency to within 10 percent of the test results. Due to wedge locks that loosened during the test, the PWB accelerations in the finite element model and the test differed by as much as 40 percent. The ceramic capacitor on the PWB was modeled in detail with leads attached to the PWB to examine bending stresses in the leads. During the 2 hr test there were no failures for those leads with adequate solder joints. A failure did occur, however, on a lead with insufficient solder. A fatigue analysis of the FEM lead bending stresses indicated lead failure if no solder was used, whereas no failures were predicted for properly soldered leads.


Author(s):  
Nicholas Kao ◽  
Jeng Yuan Lai ◽  
Jase Jiang ◽  
Yu Po Wang ◽  
C. S. Hsiao

With the trend of electronic consumer product toward more functionality, high performance and miniaturization, IC chip is required to deliver more I/Os signals and better electrical characteristics under same package form factor. Thus, Flip Chip BGA (FCBGA) package was developed to meet those requirements offering better electrical performance, more I/O pins accommodation and high transmission speed. For high-speed application, the low dielectric constant (low-k) material that can effectively reduce the signal delays is extensively used in IC chips. However, the low-k material possesses fragile mechanical property and high coefficient of thermal expansion (CTE) compared with silicon chip, which raises the reliability concerns of low-k material integrated into IC chip. The typical reliability failure modes are low-k layer delamination and bump crack under temperature loading during assembly and reliability test. Delamination is occurred in the interface between low-k dielectric layers and underfill material at chip corner. Bump crack is at Under Bump Metallization (UBM) corner. Thus, the adequate underfill material selection becomes very important for both solder bump and low-k chips [1]. This paper mainly characterized FCBGA underfill materials to guide the adequate candidates to prevent failures on low-k chip and solder bump. Firstly, test vehicle was a FCBGA package with heat spreader and was investigated the thermal stress by finite element models. In order to analyze localized low-k structures, sub-modeling technique is used for underfill characterizations. Then, the proper underfill candidates picked from modeling results were experimentally validated by reliability tests. Finally, various low-k FCBGA package structures were also studied with same finite element technique.


Sign in / Sign up

Export Citation Format

Share Document