Interfacial Adhesion of Nanoporous Zeolite Thin Films

Materials ◽  
2004 ◽  
Author(s):  
Lili Hu ◽  
Junlan Wang ◽  
Zijian Li ◽  
Shuang Li ◽  
Yushan Yan

Nanoporous zeolite thin films are promising candidates as future low-k materials. During the integration with other semiconducting materials, the high stresses resulted from the synthesis process can cause the film to fracture or delaminate from the substrates. Evaluating the interfacial adhesion of zeolite thin films is very important in achieving high performance low-k materials. In this work, laser spallation technique is utilized to investigate the interfacial strength of zeolite thin films from three different synthesis processes. The preliminary results show that the fully crystalline zeolite thin films from hydro-thermal in-situ and seeded growth methods have a stronger interface than that from the spin-on process. Effort is also being made to compare the interfacial strength of the zeolite films between the two hydro-thermal methods. This is the first time that the interfacial strength of zeolite thin films is quantitatively evaluated. The results have great significance in the future applications of low-k zeolite thin films.

2005 ◽  
Vol 875 ◽  
Author(s):  
Lili Hu ◽  
Junlan Wang ◽  
Zijian Li ◽  
Shuang Li ◽  
Yushan Yan

AbstractNanoporous zeolite thin films are promising candidates as future low dielectric constant (low-k) materials. During the integration process with other semiconductor materials, the residual stresses resulting from the synthesis processes may cause fracture or delamination of the thin films. In order to achieve high quality low-k zeolite thin films, the evaluation of the adhesion performance is important. In this paper, laser spallation technique is utilized to investigate the interfacial adhesion of zeolite thin film-Si substrate interfaces prepared using three different processes. The experimental results demonstrate that the nature of the deposition method has a great effect on the resulted interfacial adhesion of the film-substrate interfaces. This is the first time that the interfacial strength of zeolite thin films-Si substrates is quantitatively evaluated. The results have great significance in the future applications of low-k zeolite thin film materials.


2006 ◽  
Vol 21 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Lili Hu ◽  
Junlan Wang ◽  
Zijian Li ◽  
Shuang Li ◽  
Yushan Yan

Nanoporous silica zeolite thin films are promising candidates for future generation low-dielectric constant (low-k) materials. During the integration with metal interconnects, residual stresses resulting from the packaging processes may cause the low-k thin films to fracture or delaminate from the substrates. To achieve high-quality low-k zeolite thin films, it is important to carefully evaluate their adhesion performance. In this paper, a previously reported laser spallation technique is modified to investigate the interfacial adhesion of zeolite thin film-Si substrate interfaces fabricated using three different methods: spin-on, seeded growth, and in situ growth. The experimental results reported here show that seeded growth generates films with the highest measured adhesion strength (801 ± 68 MPa), followed by the in situ growth (324 ± 17 MPa), then by the spin-on (111 ± 29 MPa). The influence of the deposition method on film–substrate adhesion is discussed. This is the first time that the interfacial strength of zeolite thin films-Si substrates has been quantitatively evaluated. This paper is of great significance for the future applications of low-k zeolite thin film materials.


1996 ◽  
Vol 11 (7) ◽  
pp. 1842-1850 ◽  
Author(s):  
Justin F. Gaynor ◽  
J. Jay Senkevich ◽  
Seshu B. Desu

A vacuum deposition method is presented in which copolymer films are grown from a vinylic monomer chosen for desirable properties and paraxylylene. The concentration of paraxylylene in the final copolymer can be negligibly small if proper deposition conditions, presented here for the first time, are employed. Films of paraxylylene with N-phenyl maleimide deposited at 40 °C, for example, showed thermal stability and FTIR spectra nearly identical with homopolymers of poly(N-phenyl maleimide). Different rate-limiting steps are proposed to explain film composition; paraxylylene is under surface reaction control, while the comonomer obeys mass flow control. This results in a deposition environment extremely rich in comonomer. Growth rates and compositions were consistent with predictions. The initiation reaction did not appear different from homopolymerization of paraxylylene. The general method presented here allows fabrication of vapor-deposited thin films with properties limited primarily by the comonomer employed.


RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 100108-100114 ◽  
Author(s):  
Ruyi Zhang ◽  
Ming Liu ◽  
Lu Lu ◽  
Shao-Bo Mi ◽  
Chun-Lin Jia ◽  
...  

CuFe2O4 epitaxial films with superior FMR properties compared with bulk material have been successfully fabricated for the first time.


2019 ◽  
Author(s):  
Kent Griffith ◽  
Clare Grey

Nb18W8O69 (9Nb2O5×8WO3) is the tungsten-rich end-member of the Wadsley–Roth crystallographic shear (cs) structures within the Nb2O5–WO3 series. It has the largest block size of any known, stable Wadsley–Roth phase, comprising 5 ´ 5 units of corner-shared MO6 octahedra between the shear planes, giving rise to 2 nm ´ 2 nm blocks. Rapid lithium intercalation is observed in this new candidate battery material and 7Li pulsed field gradient nuclear magnetic resonance spectroscopy – measured in a battery electrode for the first time at room temperature – reveals superionic lithium conductivity. In addition to its promising rate capability, Nb18W8O69 adds a piece to the larger picture of our understanding of high-performance Wadsley–Roth complex metal oxides.


2018 ◽  
Author(s):  
K. A. Rubin ◽  
W. Jolley ◽  
Y. Yang

Abstract Scanning Microwave Impedance Microscopy (sMIM) can be used to characterize dielectric thin films and to quantitatively discern film thickness differences. FEM modeling of the sMIM response provides understanding of how to connect the measured sMIM signals to the underlying properties of the dielectric film and its substrate. Modeling shows that sMIM can be used to characterize a range of dielectric film thicknesses spanning both low-k and medium-k dielectric constants. A model system consisting of SiO2 thin films of various thickness on silicon substrates is used to illustrate the technique experimentally.


2019 ◽  
Vol 15 (6) ◽  
pp. 568-573
Author(s):  
Soheil Sedaghat ◽  
Ommoleila Molavi ◽  
Akram Faridi ◽  
Ali Shayanfar ◽  
Mohammad Reza Rashidi

Background: Signal transducer and activator of transcription 3 (STAT3), an oncogenic protein found constitutively active in many types of human malignancies, is considered to be a promising target for cancer therapy. Objective: In this study for the first time, a simple and accurate method has been developed for the determination of a STAT3 dimerization inhibitor called stattic in aqueous and plasma samples. Methods: A reverse-phase high-performance liquid chromatography (RP-HPLC) composed of C18 column as stationary phase, and the mixture of acetonitrile (60%) and water (40%) as mobile phase with a UV detection at 215 nm were applied for quantification of stattic. The developed method was validated by Food and Drug Administration (FDA) guideline. Results: The method provided a linear range between 1-40 and 2.5-40 µg mL-1 for aqueous and plasma samples, respectively, with a correlation coefficient of 0.999. The accuracy (as recovery) of the developed method was found to be between 95-105% for aqueous medium and 85-115% for plasma samples. The precision (as relative standard deviation) for aqueous and plasma samples was less than 6% and 15%, respectively. The sensitivity of the developed method based on FDA guideline was 1 µg mL-1 for aqueous and 2.5 µg mL-1 for plasma samples. Conclusion: These results show that the established method is a fast and accurate quantification for stattic in aqueous and plasma samples.


1989 ◽  
Vol 170 ◽  
Author(s):  
Benjamin S. Hsiao ◽  
J. H. Eric

AbstractTranscrystallization of semicrystalline polymers, such as PEEK, PEKK and PPS, in high performance composites has been investigated. It is found that PPDT aramid fiber and pitch-based carbon fiber induce a transcrystalline interphase in all three polymers, whereas in PAN-based carbon fiber and glass fiber systems, transcrystallization occurs only under specific circumstances. Epitaxy is used to explain the surface-induced transcrystalline interphase in the first case. In the latter case, transcrystallization is probably not due to epitaxy, but may be attributed to the thermal conductivity mismatch. Plasma treatment on the fiber surface showed a negligible effect on inducing transcrystallization, implying that surface-free energy was not important. A microdebonding test was adopted to evaluate the interfacial strength between the fiber and matrix. Our preliminary results did not reveal any effect on the fiber/matrix interfacial strength of transcrystallinity.


Sign in / Sign up

Export Citation Format

Share Document