Capital and Operating Cost as Driving Forces of the First Stage of Heavy Water Production

Author(s):  
R. Hilda Cha´vez ◽  
Javier de J. Guadarrama ◽  
Abel Herna´ndez-Guerrero

The present paper describes the behavior of the capital and operating cost as driving forces for the design of the first stage of enrichment of heavy water production by the Girdler Sulfide (GS) process. A very useful procedure for analyzing a process or control system is by means of the Second Law of Thermodynamics. Determining where the irreversibilities of a process or control systems are generally indicates where the greatest improvements can be made, particularly as they relate to operating cost. Thermodynamic analyses based on the concepts of irreversible entropy increase have frequently been suggested as pointers to sources of inefficiency in chemical processes. Furthermore, this study shows a generalized discussion of the cost with respect to the optimization parameters, it points out where the irreversibilities of the process are located, and provides a generalized discussion from the successful application of the technique.

Author(s):  
R. Hilda Cha´vez ◽  
Javier de J. Guadarrama ◽  
Abel Herna´ndez-Guerrero

The present paper describes the thermodynamic analysis of the first stage of enrichment of heavy water production by the Girdler Sulfide (GS) process. A very useful procedure for analyzing a proces is by means of the Second Law of Thermodynamics. Thermodynamic analyses based on the concept of irreversible entropy increase have frequently been suggested as pointers to sources of inefficiency in chemical processes. Furthermore, this study points out where the irreversibilities of the process are located, and provides a generalized discussion from the successful application of the technique.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Reiner Kümmel ◽  
Dietmar Lindenberger

Abstract We review the physical aggregation of value added and capital in terms of work performance and information processing and its relation to the deflated monetary time series of output and capital. In growth accounting it complements the time series of labor and energy, measured in hours worked per year and kilowatt-hours consumed per year, respectively. This aggregation is the conceptual basis on which those energy-dependent production functions have been constructed that reproduce economic growth of major industrial countries in the 20th century with small residuals and output elasticities that are for energy much larger and for labor much smaller than the cost shares of these factors. Accounting for growth in such a way, which deviates from that of mainstream economics, may serve as a first step towards integrating the First and the Second Law of Thermodynamics into economics.


Author(s):  
Rosa-Hilda Chavez ◽  
Jazmin Cortez-Gonzalez ◽  
Javier de J. Guadarrama ◽  
Abel Hernandez-Guerrero

The present paper describes the thermodynamic analysis of the carbon dioxide (CO2) gas removal process in two separated columns with absorption/stripping sections respectively. This process is characterized as mass transfer enhanced by chemical reaction, in which the presence of an alkanolamine enhances the solubility of an acid gas in the aqueous phase at a constant value of the equilibrium partial pressure. A very useful procedure for analyzing a process is by means of the Second Law of Thermodynamics. Thermodynamic analyses based on the concepts of irreversible entropy increase have frequently been suggested as pointers to sources of inefficiency in chemical processes. Furthermore, they point out where the irreversibilities of the process are located, and provide a generalized discussion from the successful application of the technique.


2014 ◽  
Author(s):  
J. Fajardo ◽  
B. Sarria ◽  
M. Alvarez Guerra

This work has as object of study the energy of a river ship air conditioning system performance, using fiberglass, polyurethane or rockwool as insulation. Thermoeconomics Indicators based on second law of thermodynamics which take into account the quality of the energy and the cost of the exergy were used for research. It was observed that: (i) by increasing the thickness of the insulation the irreversibilities decreased, (ii) increases in the destroyed exergy increased generation of cooling load costs and (iii) costs per unit of exergy of heat load and area for the generation of cooling load and for investment in exergetic insulation, were minors for polyurethane.


Author(s):  
Rosa-Hilda Chavez ◽  
Javier de J. Guadarrama ◽  
Abel Hernandez-Guerrero

Carbon dioxide capture from flue gas using amine-based CO2 capture technology requires huge amounts of energy mostly in the form of heat. The overall objective of this study is to evaluate the feasibility of obtaining the heat required for amine absorption for a particular recovery of carbon dioxide for a given a set of equipment specifications and operating conditions from the process and to develop a model that simulates the removal of CO2 using Monoethanolamine (MEA) absorption from flue gas and design a process that will minimize the energy of CO2 capture with Aspen Plus™ will be used. A very useful procedure for analyzing a process is by means of the Second Law of Thermodynamics. Thermodynamic analyses based on the concepts of irreversible entropy increase have frequently been suggested as pointers to sources of inefficiency in chemical processes.


Author(s):  
A. M. Savchenko ◽  
Yu. V. Konovalov ◽  
A. V. Laushkin

The relationship of the first and second laws of thermodynamics based on their energy nature is considered. It is noted that the processes described by the second law of thermodynamics often take place hidden within the system, which makes it difficult to detect them. Nevertheless, even with ideal mixing, an increase in the internal energy of the system occurs, numerically equal to an increase in free energy. The largest contribution to the change in the value of free energy is made by the entropy of mixing, which has energy significance. The entropy of mixing can do the job, which is confirmed in particular by osmotic processes.


Author(s):  
Olivier Darrigol

This chapter recounts how Boltzmann reacted to Hermann Helmholtz’s analogy between thermodynamic systems and a special kind of mechanical system (the “monocyclic systems”) by grouping all attempts to relate thermodynamics to mechanics, including the kinetic-molecular analogy, into a family of partial analogies all derivable from what we would now call a microcanonical ensemble. At that time, Boltzmann regarded ensemble-based statistical mechanics as the royal road to the laws of thermal equilibrium (as we now do). In the same period, he returned to the Boltzmann equation and the H theorem in reply to Peter Guthrie Tait’s attack on the equipartition theorem. He also made a non-technical survey of the second law of thermodynamics seen as a law of probability increase.


2018 ◽  
Author(s):  
M. T. Nitsas ◽  
I. P. Koronaki ◽  
L. Prentza

The utilization of solar energy in thermal energy systems was and always be one of the most effective alternative to conventional energy resources. Energy efficiency is widely used as one of the most important parameters in order to evaluate and compare thermal systems including solar collectors. Nevertheless, the first law of thermodynamics is not solely capable of describing the quantitative and qualitative performance of such systems and thus exergy efficiency is used so as to introduce the systems’ quality. In this work, the performance of a flat plate solar collector using water based nanofluids of different nanoparticle types as a working fluid is analyzed theoretically under the climatic conditions in Greece based on the First and Second Law of Thermodynamics. A mathematical model is built and the model equations are solved iteratively in a MATLAB code. The energy and exergy efficiencies as well as the collector losses coefficient for various parameters such as the inlet temperature, the particles concentration and type are determined. Moreover, a dynamic model is built so as to determine the performance of a flat plate collector working with nanofluids and the useful energy that can be stored in a water tank. The exergy destruction and exergy leakage are determined for a typical day in summer during which high temperatures and solar intensity values are common for the Greek climate.


Sign in / Sign up

Export Citation Format

Share Document