Heat Transfer Characteristics in Flue Gas Fired Regenerators of Water/Lithium Bromide Absorption Chillers

Author(s):  
Christoph Kren ◽  
Christian Schweigler ◽  
Felix Ziegler

It has already been shown that efficiency of direct-fired absorption chillers or tri-generation systems (CCHP) can be increased if the hot flue gas - from internal gas burner or from motor engines or gas turbines - is successively utilized in the absorption cycle at several temperature levels. For successful realization of such concepts, however, efficient heat exchanger designs are required. An increase in complexity on the flue gas side of the chiller must not introduce a proportional increase in size, cost, and pressure drop. Thus, the development of a compact and efficient flue gas fired regenerator design with low flue gas pressure drop is a major step towards COP increase in direct-fired and exhaust-fired absorption chillers. The potential of different regenerator concepts including common smoke tube design and alternative boiling tube designs with natural circulation of the lithium bromide solution and flue gas flow across bundles of plain or finned tubes is discussed. Promising designs are identified on basis of numerical calculations. A semi-industrial sized prototype of a direct-fired regenerator with consecutive sections of plain and finned vertical boiling tubes has been tested in laboratory over a range of thermal inputs up to 256 kW (net. CV). Experimental results of heat transfer and combustion side pressure drop investigations at the novel regenerator are presented. Accordance of experimental results with theoretical predictions is shown.

Author(s):  
Ignacio Carvajal-Mariscal ◽  
Florencio Sanchez-Silva ◽  
Georgiy Polupan

In this work the heat transfer and pressure drop experimental results obtained in a two step finned tube bank with conical fins are presented. The tube bank had an equilateral triangle array composed of nine finned tubes with conical fins inclined 45 degrees in respect with the tube axis. The heat exchange external area of a single tube is approximately 0.07 m2. All necessary thermal parameters, inlet/outlet temperatures, mass flows, for the heat balance in the tube bank were determined for different air velocities, Re = 3400–18400, and one constant thermal charge provided by a hot water flow with a temperature of 80 °C. As a result, the correlations for the heat transfer and pressure drop calculation were obtained. The experimental results were compared against the analytical results for a tube bank with annular fins with the same heat exchange area. It was found that the proposed tube bank using finned tubes with conical fins shows an increment of heat transfer up to 58%.


Author(s):  
Branislav Jacimovic ◽  
Srbislav Genic ◽  
Nikola Jacimovic

Abstract During the sizing of the radiant zone in boilers and furnaces, the most often used method is the Lobo-Evans model. This method is based on the perfect mixing model for flue gas flow inside the fire box, which represents a conservative or pessimistic flow pattern. This paper presents a different, optimistic model which is based on the plug flow for flue gas flow which results in the largest possible heat duty. The proposed model is given in two distinct forms – integral and numerical. As shown in the paper, the integral model results in small deviations with respect to the numerical model and, as such, is well suited for the engineering practice. Paper also presents an engineering approach to the calculation of the conductive heat transfer through the membrane wall, which is shown to be sufficiently accurate and simple for engineering calculations.


Author(s):  
Adamos Adamou ◽  
Colin Copeland

Abstract Augmented backside cooling refers to the enhancement of the backside convection of a combustor liner using extended heat transfer surfaces to fully utilise the cooling air by maximising the heat transfer to pumping ratio characteristic. Although film cooling has and still is widely used in the gas turbine industry, augmented backside cooling has been in development for decades now. The reason for this, is to reduce the amount of air used for liner cooling and to also reduce the emissions caused by using film cooling in the primary zones. In the case of micro gas turbines, emissions are of even greater importance, since the regulations for such engines will most likely become stricter in the following years due to a global effort to reduce emission. Furthermore, the liners investigated in this paper are for a 10 kWe micro turbine, destine for various potential markets, such as combine heat and power for houses, EV hybrids and even small UAVs. The majority of these markets require long service intervals, which in turn requires the combustor liners to be under the least amount of thermal stress possible. The desire to also increase combustor inlet temperatures with the use of recuperated exhaust gases, which in turn increase the overall system efficiency, limits the cooling effectiveness of the inlet air. Due to all these reasons, an advanced form of augmented backside cooling would be of substantial significance in such a system. Currently some very simple designs are used in the form of straight plain fins, transverse strips or other similar geometries, but the creation of high heat transfer efficiency surfaces in such small sizes becomes very difficult with traditional subtractive manufacturing methods. When using additive manufacturing though these types of surfaces are not an issue. This paper covers the comparison of experimental results with conjugate heat transfer CFD models and empirical heat balance models for two different AM liner cooling geometries and an AM blank liner. The two cooling fin geometries include a rotating plain fin and an offset strip fin. The liners were tested in an AM built reverse flow radial swirl stabilised combustion chamber at a variety of operating conditions. During the experiments the surfaces were compared using a thermal camera to record the outer liner temperature which was viewed through a quartz outer casing. The experimental results showed that the cooling surfaces were effective at reducing the liner temperatures with minimal pressure losses for multiple operating points. Those results were then compared against the conjugate heat transfer CFD models and the empirical calculations used to design the surfaces initially. From this comparison, it was noticed both the CFD and empirical calculations under predicted the wall temperatures. This is thought to be due to inaccuracies in the predicted flame temperatures and the assumed emissivity values used to calibrate the thermal imaging camera. Further uncertainties arise from the assumption of a constant air and hot gas temperature and mass flow along the cooling surfaces and the lack of data for the surface roughness of the parts.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Weitong Li ◽  
Lei Yu ◽  
Jianli Hao ◽  
Mingrui Li

Passive safety system is the core feature of advanced nuclear power plant (NPP). It is a research hotspot to fulfill the function of passive safety system by improving the NPP natural circulation capacity. Considering that the flow behaviors of stopped pump pose a significant effect on natural circulation, both experimental and computational fluid dynamics (CFD) methods were performed to investigate the flow behaviors of a NPP centrifugal pump under natural circulation condition with a low flow rate. Since the pump structure may lead to different flows depending on the flow direction, an experimental loop was set up to measure the pressure drop and loss coefficient of the stopped pump for different flow directions. The experimental results show that the pressure drop of reverse direction is significantly greater than that of forward direction in same Reynolds number. In addition, the loss coefficient changes slightly while the Reynolds number is greater than 8 × 104; however, the coefficients show rapid increase with the decrease in Reynolds number under lower Reynolds number condition. According to the experimental data, an empirical correlation of the pump loss coefficient is obtained. A CFD analysis was also performed to simulate the experiment. The simulation provides a good accuracy with the experimental results. Furthermore, the internal flow field distributions are obtained. It is observed that the interface regions of main components in pump contribute to the most pressure losses. Significant differences are also observed in the flow field between forward and reverse condition. It is noted that the local flows vary with different Reynolds numbers. The study shows that the experimental and CFD methods are beneficial to enhance the understanding of pump internal flow behaviors.


2011 ◽  
Vol 383-390 ◽  
pp. 6657-6662 ◽  
Author(s):  
Jun Xiao Feng ◽  
Qi Bo Cheng ◽  
Si Jing Yu

Based on the analysis of structural characteristic superiority, the process of combustion, flue gas flow and heat transfer in the upright magnesium reducing furnace, the three dimensional mathematical model is devoloped. And numerical simulation is performed further with the commercial software FLUENT. Finally, the flow and temperature field in furnace and temperature field in reducing pot have been obtained. The results indicate that the upright magnesium reducing furnace has perfect flue gas flow field and temperature field to meet the challenge of the magnesium reducing process; the major factors that affect the magnesium reducing reaction are the low thermal conductivity of slag and the high chemical reaction heat absorption.


2002 ◽  
Vol 124 (5) ◽  
pp. 975-978 ◽  
Author(s):  
Li Yong and ◽  
K. Sumathy

Quasi-local absorption heat transfer coefficients and pressure drop inside a horizontal tube absorber have been investigated experimentally, with R-22/DMA as the working pair. The absorber is a counterflow coaxial tube-in-tube heat-exchanger with the working fluid flowing in the inner tube while the water moves through the annulus. A large temperature gliding has been experienced during the absorption process. Experimental results show that the heat transfer coefficient of the forced convective vapor absorption process is higher compared to the vertical falling film absorption. A qualitative study is made to analyze the effect of mass flux, vapor quality and solution concentration on pressure drop and heat transfer coefficients. On the basis of the experimental results, a new correlation is proposed whereby the two-phase heat transfer is taken as a product of the forced convection of the absorption and the combined effect of heat and mass transfer at the interface. The correlation is found to predict the experimental data almost within 30 percent.


Author(s):  
Marek Dzida ◽  
Krzysztof Kosowski

In bibliography we can find many methods of determining pressure drop in the combustion chambers of gas turbines, but there is only very few data of experimental results. This article presents the experimental investigations of pressure drop in the combustion chamber over a wide range of part-load performances (from minimal power up to take-off power). Our research was carried out on an aircraft gas turbine of small output. The experimental results have proved that relative pressure drop changes with respect to fuel flow over the whole range of operating conditions. The results were then compared with theoretical methods.


Author(s):  
Ki Wook Jung ◽  
Hyoungsoon Lee ◽  
Chirag Kharangate ◽  
Feng Zhou ◽  
Mehdi Asheghi ◽  
...  

Abstract High performance and economically viable thermal cooling solutions must be developed to reduce weight and volume, allowing for a wide-spread utilization of hybrid electric vehicles. The traditional embedded microchannel cooling heat sinks suffer from high pressure drop due to small channel dimensions and long flow paths in 2D-plane. Utilizing direct “embedded cooling” strategy in combination with top access 3D-manifold strategy reduces the pressure drop by nearly an order of magnitude. In addition, it provides more temperature uniformity across large area chips and it is less prone to flow instability in two-phase boiling heat transfer. Here, we present the experimental results for single-phase thermofluidic performance of an embedded silicon microchannel cold-plate bonded to a 3D manifold for heat fluxes up to 300 W/cm2 using single-phase R-245fa. The heat exchanger consists of a 52 mm2 heated area with 25 parallel 75 × 150 μm2 microchannels, where the fluid is distributed by a 3D-manifold with 4 micro-conduits of 700 × 250 μm2. Heat is applied to the silicon heat sink using electrical Joule-heating in a metal serpentine bridge and the heated surface temperature is monitored in real-time by Infra-red (IR) camera and electrical resistance thermometry. The experimental results for maximum and average temperatures of the chip, pressure drop, thermal resistance, average heat transfer coefficient for flow rates of 0.1, 0.2. 0.3 and 0.37 lit/min and heat fluxes from 25 to 300 W/cm2 are reported. The proposed Embedded Microchannels-3D Manifold Cooler, or EMMC, device is capable of removing 300 W/cm2 at maximum temperature 80 °C with pressure drop of less than 30 kPa, where the flow rate, inlet temperature and pressures are 0.37 lit/min, 25 °C and 350 kPa, respectively. The experimental uncertainties of the test results are estimated, and the uncertainties are the highest for heat fluxes < 50 W/cm2 due to difficulty in precisely measuring the fluid temperature at the inlet and outlet of the micro-cooler.


Author(s):  
Lazarus Godson ◽  
B. Raja ◽  
D. Mohan Lal ◽  
S. Wongwises

The convective heat transfer coefficient and pressure drop of silver-water nanofluids is measured in a counter flow heat exchanger from laminar to turbulent flow regime. The experimental results show that the convective heat transfer coefficient of the nanofluids increases by up to 69% at a concentration of 0.9 vol. % compared with that of pure water. Furthermore, the experimental results show that the convective heat transfer coefficient enhancement exceeds the thermal conductivity enhancement. It is observed that the measured heat transfer coefficient is higher than that of the predicted ones using Gnielinski equation by at least 40%. The use of the silver nanofluid has a little penalty in pressure drop up to 55% increase 0.9% volume concentration of silver nanoparticles.


2002 ◽  
Vol 124 (3) ◽  
pp. 155-163 ◽  
Author(s):  
A. Bhattacharya ◽  
R. L. Mahajan

In this paper, we present recent experimental results on forced convective heat transfer in novel finned metal foam heat sinks. Experiments were conducted on aluminum foams of 90 percent porosity and pore size corresponding to 5 PPI (200 PPM) and 20 PPI (800 PPM) with one, two, four and six fins, where PPI (PPM) stands for pores per inch (pores per meter) and is a measure of the pore density of the porous medium. All of these heat sinks were fabricated in-house. The forced convection results show that heat transfer is significantly enhanced when fins are incorporated in metal foam. The heat transfer coefficient increases with increase in the number of fins until adding more fins retards heat transfer due to interference of thermal boundary layers. For the 20 PPI samples, this maximum was reached for four fins. For the 5 PPI heat sinks, the trends were found to be similar to those for the 20 PPI heat sinks. However, due to larger pore sizes, the pressure drop encountered is much lower at a particular air velocity. As a result, for a given pressure drop, the heat transfer coefficient is higher compared to the 20 PPI heat sink. For example, at a Δp of 105 Pa, the heat transfer coefficients were found to be 1169W/m2-K and 995W/m2-K for the 5 PPI and 20 PPI 4-finned heat sinks, respectively. The finned metal foam heat sinks outperform the longitudinal finned and normal metal foam heat sinks by a factor between 1.5 and 2, respectively. Finally, an analytical expression is formulated based on flow through an open channel and incorporating the effects of thermal dispersion and interfacial heat transfer between the solid and fluid phases of the porous medium. The agreement of the proposed relation with the experimental results is promising.


Sign in / Sign up

Export Citation Format

Share Document