Efficient and Flexible Tri-Generation With Two-Stage Absorption Chiller

Author(s):  
S. Plura ◽  
C. Kren ◽  
C. Schweigler

Aiming for the European and North American tri-generation market, highly-efficient systems are being developed. At the moment, single-stage absorption chillers are typically coupled to co-generation engines through a single hot water loop at temperatures below 100°C (210°F). In this configuration, the heat from the exhaust gas at temperatures of about 400-500°C (750-930°F) is transferred to the water loop, which is accompanied by a significant loss of exergy. A substantial increase in system performance can be achieved by a stepwise utilisation of the exhaust gas enthalpy in a Double-Effect and a Single-Effect cycle. In this combination of one-and two-stage chillers the coefficient of performance (COP) increases from about 0.7 to almost 1.0 whereby the cooling capacity rises by about 25%. In order to facilitate optimum adaptation of the aggregates - i.e. motor engine and absorption chiller - and to give maximum flexibility an innovative system concept has been developed. The new coupling scheme is based on a standard direct-fired Double-Effect chiller and introduces only minor design changes, like adaptation of the thermal layout of the exhaust gas driven regenerator heat exchanger of the chiller. No additional low temperature regenerators are required. In case of simultaneous heating and cooling the system supports a continuous switchover between maximum cooling and maximum heating capacity. In this mode up to 80% of the driving heat for cold production can be recovered as useful heat at temperatures up to 100°C (210°F). A description of the coupling scheme together with a discussion of energetic and operational characteristics of the concept is presented. Full-scale demonstration projects are under preparation.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 996 ◽  
Author(s):  
Li Huang ◽  
Rongyue Zheng ◽  
Udo Piontek

A solar cooling and heating system incorporated with two air-source heat pumps was installed in Ningbo City, China and has been operating since 2018. It is composed of 40 evacuated tube modules with a total aperture area of 120 m2, a single-stage and LiBr–water-based absorption chiller with a cooling capacity of 35 kW, a cooling tower, a hot water storage tank, a buffer tank, and two air-source heat pumps, each with a rated cooling capacity of 23.8 kW and heating capacity of 33 kW as the auxiliary system. This paper presents the operational results and performance evaluation of the system during the summer cooling and winter heatingperiod, as well as on a typical summer day in 2018. It was found that the collector field yield and cooling energy yield increased by more than 40% when the solar cooling and heating system is incorporated with heat pumps. The annual average collector efficiency was 44% for cooling and 42% for heating, and the average coefficient of performance (COP) of the absorption chiller ranged between 0.68 and 0.76. The annual average solar fraction reached 56.6% for cooling and 62.5% for heating respectively. The yearly electricity savings accounted for 41.1% of the total electricity consumption for building cooling and heating.


Author(s):  
Prangtip Samutr ◽  
Ali Al Alili

This paper presents a dynamic model of a single-stage LiBr-H2O absorption chiller. A numerical model has been developed based on mass and energy balance equations and heat transfer equations. The model is developed using MATLAB program and the system of non-linear ordinary differential equation is solved using the 4th-order Runge-Kutta method. The model is validated with experimental results from pertained literature. The results show that the maximum relative error is found when comparing the dynamic model predicted chilled water outlet temperature to experimental data, which is around 9%. The effect of the inlet hot water temperature on the hot, cooling and chilled water outlet temperatures, cooling capacity and coefficient of performance (COP) are also studied. The results show that as the hot water outlet temperature increases, the outlet temperatures of cooling and chilled water slightly change. Moreover, the cooling capacity increases and the COP slight decreases as the hot water temperature increases.


2011 ◽  
Vol 374-377 ◽  
pp. 398-404 ◽  
Author(s):  
Ying Ning Hu ◽  
Ban Jun Peng ◽  
Shan Shan Hu ◽  
Jun Lin

A hot-water and air-conditioning (HWAC) combined ground sourse heat pump(GSHP) system with horizontal ground heat exchanger self-designed and actualized was presented in this paper. The heat transfer performance for the heat exchanger of two different pipe arrangements, three layers and four layers, respectively, was compared. It showed that the heat exchange quantity per pipe length for the pipe arrangement of three layers and four layers are 18.0 W/m and 15.0 W/m. The coefficient of performance (COP) of unit and system could remain 4.8 and 4.2 as GSHP system for heating water, and the COP of heating and cooling combination are up to 8.5 and 7.5, respectively. The power consumption of hot-water in a whole year is 9.0 kwh/t. The economy and feasibility analysis on vertical and horizontal ground heat exchanger were made, which showed that the investment cost per heat exchange quantity of horizontal ground heat exchanger is 51.4% lower than that of the vertical ground heat exchanger, but the occupied area of the former is 7 times larger than the latter's.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
M. Alkhair ◽  
M. Y. Sulaiman ◽  
K. Sopian ◽  
C. H. Lim ◽  
E. Salleh ◽  
...  

The modeling of the performance of a one refrigeration ton (RT) solar assisted adsorption air-conditioning refrigeration system using activated carbon fiber/ethanol as the adsorbent/adsorbate pair has been undertaken in this study. The effects of hot water, cooling water, chilled water inlet temperatures, and hot water and chilled water flow rates were taken into consideration in the optimization of the system and in the design of the condenser, evaporator, and hot water storage tank. The study includes analysis of the weather data and its effect on both the adsorption system and the cooling load. This is then followed by estimation of the cooling capacity and coefficient of performance (COP) of the adsorption system as a function of the input parameters. The results of the model will be compared to experimental data in a next step.


Author(s):  
Fadi A. Ghaith ◽  
Kamal Majlab Wars

Abstract This paper addresses the potential of integrating the existing oil wells and absorption chiller for the purpose of provision space cooling for the base camp of oil field at Block 9 located in Oman. The wellbore was used as a hot water feed to the chiller. Well S 347 was selected as the hot water source and well S 179 was selected to be the injection well for the outlet water. The existing wells were assessed via PIPESIM software. Using PIPESIM software, the fluid temperatures, well pressure and flow rates were obtained and analyzed throughout NODAL analyses. The water temperature of 100 °C, well head pressure of 100 psi and flow rate of 30 m3/h, were found to be the optimum operating parameters. The COP of the absorption chiller was obtained via ABSIM software. The variable operating conditions were investigated and elaborated as a function of the efficiency and capacity ratio. The designed system was configured to yield 0.733 COP and a capacity of 377 KW which met the cooling capacity of the admin building of block 9. The entire feasibility analysis was performed in terms of the overall cost as well as the saving that would be achieved from such homogeneity. The payback period of the entire system was found to be 7 years which emphasized a great potential of adapting the technology if the operating resources are available.


2000 ◽  
Author(s):  
B. B. Saha ◽  
K. C. A. Alam ◽  
A. Akisawa ◽  
T. Kashiwagi ◽  
K. C. Ng ◽  
...  

Abstract Over the past two decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and use of CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons). Closed-type, conventional adsorption refrigeration and heat pump systems have an increasing market share in Japan. In this paper, a two-stage non-regenerative, silica gel-water adsorption chiller design is outlined. Experimental measurements are performed on a prototype of a 3.5 kW rated cooling capacity adsorption heat pump in order to determine its performance under different operating temperatures (hot, cooling and chilled water). The chiller performance is analyzed in terms of cooling capacity and coefficient of performance (COP). The main innovative feature in the two-stage adsorption chiller is the ability to utilize low-temperature waste heat (∼55°C) as the driving source with a cooling source of 30°C. The technological difficulty inherent in operating a thermally activated cycle with such a small regenerating temperature lift (temperature difference between heat source and heat sink inlets) is overcome by use of a two-stage cycle.


Author(s):  
Abdolreza Zaltash ◽  
Andrei Petrov ◽  
Randall Linkous ◽  
Edward Vineyard ◽  
David Goodnack ◽  
...  

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This paper describes an innovative absorption technology based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the “next generation” absorption units. This absorption chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space and increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller which requires no cooling tower. The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to thermal energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35°C (95°F) design condition for ambient temperature with 40°C (104°F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. Future work will use these performance results to evaluate the potential benefits of rotating heat exchangers in making the “next-generation” absorption chillers more compact and cost effective without any significant degradation in the performance. Future studies will also evaluate the feasibility of using rotating heat exchangers in other applications.


Author(s):  
Abdullah Alabdulkarem ◽  
Michael Cristiano ◽  
Yunho Hwang ◽  
Reinhard Radermacher

Packaged terminal air conditioning (PTAC) systems are typically utilized for space heating and cooling in hotels and apartment buildings. However, they cool the air to low temperature for dehumidification and some reheating may be required to resolve overcooling. A prototype of a solid desiccant wheel assisted separate sensible and latent cooling (SSLC) PTAC system was designed and constructed, which has a cooling capacity of 3.5 kW. The heat exchangers and vapor compression cycle were modeled in in-house software, CoilDesigner and VapCyc. The modeling results show improvement in the coefficient of performance from 3.12 to 4.05 or 30%. Cost study was conducted to evaluate the economics of SSLC PTAC units within the U.S. climate conditions. The study shows the payback period for the national average could be as low as 2 years. The system was experimentally tested and its performance was not as expected due to some design challenges. This paper highlights the lessons learned from the modeling and experimental work and discusses the economic analysis in addition to future design improvements and system optimization.


2018 ◽  
Vol 26 (03) ◽  
pp. 1850021 ◽  
Author(s):  
Swapnil Dubey ◽  
Alison Subiantoro

Thermal systems of buildings in the tropics are highly energy intensive. In this study, a novel integrated solar photovoltaic–thermal–refrigeration (PVTR) system used to produce hot water and air-conditioning in the tropical climate conditions of Singapore was analyzed. A dynamic simulation model was formulated for the analysis. Mathematical models were developed for the PV sandwich attached with a solar flat plate collector and for the main components of the refrigeration system. Thorough investigation of the electrical and thermal performances of the system were conducted through the analysis of coefficient of performance (COP), cooling capacity, water temperature and heat capacity in water heater, photovoltaic (PV) module temperature and PV efficiency. The results show that attractive electrical and thermal performance can be achieved with a maximum annual cooling COP of 9.8 and a heating COP of 11.3. The PV efficiency and power saving were 14% and 53%, respectively. The annual cooling, heating and PV energy produced were 9.7, 15.6 and 1.6[Formula: see text]MWh, respectively. The financial payback period of the system was 3.2 years and greenhouse gas (GHG) emission reduction annually was 12.6 tons of CO2 equivalents (tCO2e).


Sign in / Sign up

Export Citation Format

Share Document