Design and Testing of a Separate Sensible and Latent Cooling Packaged Terminal Air Conditioning Unit

Author(s):  
Abdullah Alabdulkarem ◽  
Michael Cristiano ◽  
Yunho Hwang ◽  
Reinhard Radermacher

Packaged terminal air conditioning (PTAC) systems are typically utilized for space heating and cooling in hotels and apartment buildings. However, they cool the air to low temperature for dehumidification and some reheating may be required to resolve overcooling. A prototype of a solid desiccant wheel assisted separate sensible and latent cooling (SSLC) PTAC system was designed and constructed, which has a cooling capacity of 3.5 kW. The heat exchangers and vapor compression cycle were modeled in in-house software, CoilDesigner and VapCyc. The modeling results show improvement in the coefficient of performance from 3.12 to 4.05 or 30%. Cost study was conducted to evaluate the economics of SSLC PTAC units within the U.S. climate conditions. The study shows the payback period for the national average could be as low as 2 years. The system was experimentally tested and its performance was not as expected due to some design challenges. This paper highlights the lessons learned from the modeling and experimental work and discusses the economic analysis in addition to future design improvements and system optimization.

2021 ◽  
Vol 4 ◽  
pp. 133-139
Author(s):  
Rikhard Ufie ◽  
Cendy S. Tupamahu ◽  
Sefnath J. E. Sarwuna ◽  
Jufraet Frans

Refrigerant R-22 is a substance that destroys the ozone layer, so that in the field of air conditioning it has begun to be replaced, among others with refrigerants R-32 and R-410a, and also R-290. Through this research, we want to know how much Coefficient of Performance (COP) and Refrigeration Capacity (Qe) can be produced for the four types of refrigerants. The study was carried out theoretically for the working conditions of the vapor compression cycle with an evaporation temperature (Tevap) of 0, -5, and -10oC, a further heated refrigerant temperature (ΔTSH) of 5 oC, a condensation temperature (Tkond) of 45 oC and a low-cold refrigerant temperature. (ΔTSC) 10 oC and compression power of 1 PK . The results of the study show that the Coefficient of Performance (COP) in the use of R-22 and R-290 is higher than the use of R-32 and R-410a, which are 4,920 respectively; 4,891; 4.690 and 4.409 when working at an evaporation temperature of 0 oC; 4.260; 4,234; 4.060 and 3.812 when working at an evaporation temperature of -5 oC; and amounted to 3,730; 3,685; 3,550 and 3,324 if working at an evaporation temperature of -10 oC. Based on the size of the COP, if this installation works with a compression power of 1 PK, then the cooling capacity of the R-22 and R-290 is higher than the R-32 and R-410a, which are 3,617 respectively. kW; 3,597 kW; 3,449 kW and 3,243 kW. If working at an evaporation temperature of 0 oC; 3.133 kW; 3.114 kW; 2,986 kW and 2,804 kW if working at an evaporation temperature of -5 oC; and 2,741 kW; 2,710 kW; 2,611 kW and 2,445 kW if working at an evaporation temperature of -10oC.


2018 ◽  
Vol 26 (03) ◽  
pp. 1850021 ◽  
Author(s):  
Swapnil Dubey ◽  
Alison Subiantoro

Thermal systems of buildings in the tropics are highly energy intensive. In this study, a novel integrated solar photovoltaic–thermal–refrigeration (PVTR) system used to produce hot water and air-conditioning in the tropical climate conditions of Singapore was analyzed. A dynamic simulation model was formulated for the analysis. Mathematical models were developed for the PV sandwich attached with a solar flat plate collector and for the main components of the refrigeration system. Thorough investigation of the electrical and thermal performances of the system were conducted through the analysis of coefficient of performance (COP), cooling capacity, water temperature and heat capacity in water heater, photovoltaic (PV) module temperature and PV efficiency. The results show that attractive electrical and thermal performance can be achieved with a maximum annual cooling COP of 9.8 and a heating COP of 11.3. The PV efficiency and power saving were 14% and 53%, respectively. The annual cooling, heating and PV energy produced were 9.7, 15.6 and 1.6[Formula: see text]MWh, respectively. The financial payback period of the system was 3.2 years and greenhouse gas (GHG) emission reduction annually was 12.6 tons of CO2 equivalents (tCO2e).


Author(s):  
Moustafa M Aboelmaaref ◽  
Mohamed E Zayed ◽  
Ammar H Elsheikh ◽  
Ahmed A Askalany ◽  
Jun Zhao ◽  
...  

Solar cooling technologies can play a vital role in renewable energy applications development. Thermoelectric systems have shown promising advantages over traditional refrigeration systems such as high thermal comfort, active adaptability, no moving parts, and refrigerants free. In this work, a novel thermoelectric air-conditioning system (TEACS) driven by photovoltaics (PV) is experimentally and theoretically investigated under the hot climate conditions of Sohag city (30°26′N, 42°31′E), Egypt for air conditioning of a typical small-size office room under different thermal loads. During day time, PV panels produce electricity which utilized to drive the TEACS directly and to charge batteries that store electricity to be exploited during nighttime. Moreover, a numerical model implemented in TRNSYS coupled with MATLAB software is developed to evaluate the performance of the proposed TEACS. The influences of varying the input electric current on the coefficient of performance (COP), cooling capacity, and average air room temperature are also studied. The results showed that a design point with an input current of 2.5 A for a cooling capacity of 30 W could be selected to maximize the cooling performance, in which the COP of the TEACS is found to be 2.2. Moreover, the daily average air temperature of the conditioned room was found to be 23.5, 25.5, 27.5, 28.5, and 30.5  °C for internal thermal loads of 0.0 W, 65.0 W,130.0 W, 195.0 W, and 260.0 W, respectively, at average air intake temperature of 36  °C, daily average input current of 4.28 A and air volume flow rate of 14.4 m3/h. It can be concluded that the TEACS powered by PV could be considered as a proper alternative to the traditional vapor compression systems.


Author(s):  
Yilin Du ◽  
Jan Muehlbauer ◽  
Jiazhen Ling ◽  
Vikrant Aute ◽  
Yunho Hwang ◽  
...  

A rechargeable personal air-conditioning (RPAC) device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The conditioned air is discharged towards a single person through adjustable nozzle. The main focus of the current research was on the development of the cooling system. A 100 W cooling capacity prototype was designed, built, and tested. The cooling capacity of the vapor compression cycle measured was 165.6 W. The PCM was recharged in nearly 8 hours under thermosiphon mode. When this device is used in the controlled built environment, the thermostat setting can be increased so that building air conditioning energy can be saved by about 5–10%.


2018 ◽  
Vol 40 (2) ◽  
pp. 220-236 ◽  
Author(s):  
Irfan Ahmad Gondal

This study presents an innovative concept of a compact integrated solar-thermoelectric module that can form part of the building envelope. The heating/cooling modes use the photovoltaic electrical current to power the heat pump. The experimental analysis was carried out and the results of coefficient of performance were in the range 0.5–1 and 2.6–5 for cooling and heating functions, respectively. The study demonstrates that thermoelectric cooler can effectively be used for heating, ventilation, and air conditioning applications by integrating with solar panels especially in cooling applications. The system is environmentally friendly and can contribute in the implementation of zero energy buildings concept. Practical application: In order to help address the challenge of climate change and associated environmental effects, there is continuous demand for new technologies and applications that can be readily integrated into day-to-day life as a means of reducing anthropogenic impact. Heating, ventilation, and air conditioning, as one of the largest energy consumers in buildings, is the focus of many researchers seeking to reduce building energy use and environmental impact. This article proposes using facades and windows that have an integrated modules of solar photovoltaic cells and thermoelectric devices that are able to work together to achieve heating and cooling effects as required by the building without requiring any external operational power.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yousuf Alhendal ◽  
Abdalla Gomaa ◽  
Gamal Bedair ◽  
Abdulrahim Kalendar

The energy and exergy of low-global warming potential (GWP) refrigerants were investigated experimentally and theoretically. Refrigerants with a modest GWP100 of  ≤ 150 can be sufficient for bringing down emissions which were concerned for the automotive air-conditioning system. Three types of low-GWP refrigerants, R152a, R1234yf, and R1234ze(E), were examined with particular reference to the current high-GWP of R134a. The effect of different evaporating and condensing temperatures in addition to compressor speed was considered. The purpose was to bring a clear view of the performance characteristics of possible environment friendly alternatives of R134a. The analysis was carried out with compressor power, cooling capacity, coefficient of performance, exergy destruction, and exergy efficiency. It was noted that the total exergy destruction of R1234yf was reduced by 15% compared to that of R134a. The refrigerant R1234ze(E) has the highest energetic and exergetic performance compared with the other investigated refrigerants.


2020 ◽  
Vol 28 (04) ◽  
pp. 2050038
Author(s):  
Dishant Sharma ◽  
Gulshan Sachdeva ◽  
Dinesh Kumar Saini

This paper presents the analysis of a modified vapor compression cooling system which uses an ejector as an expansion device. Expanding refrigerant in an ejector enhances the refrigeration effect and reduces compressor work. Therefore, it yields a better coefficient of performance. Thermodynamic analysis of a constant area ejector model has been done to obtain primary dimensions of the ejector for given condenser and evaporator temperature and cooling capacity. The proposed model has been used to design the ejector for three refrigerants; R134a, R152a and R1234yf. The refrigerant flow rate and the diameters at various sections of the ejector have been obtained by doing numerical modeling in Engineering Equation Solver (EES). Refrigerant R1234yf demanded the highest diameter requirements at a fixed 5∘C evaporator temperature and 40∘C condenser temperature for a given range of cooling load. Both primary and secondary refrigerants flow rates are higher for R1234yf followed by R134a and then R152a.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
M. Alkhair ◽  
M. Y. Sulaiman ◽  
K. Sopian ◽  
C. H. Lim ◽  
E. Salleh ◽  
...  

The modeling of the performance of a one refrigeration ton (RT) solar assisted adsorption air-conditioning refrigeration system using activated carbon fiber/ethanol as the adsorbent/adsorbate pair has been undertaken in this study. The effects of hot water, cooling water, chilled water inlet temperatures, and hot water and chilled water flow rates were taken into consideration in the optimization of the system and in the design of the condenser, evaporator, and hot water storage tank. The study includes analysis of the weather data and its effect on both the adsorption system and the cooling load. This is then followed by estimation of the cooling capacity and coefficient of performance (COP) of the adsorption system as a function of the input parameters. The results of the model will be compared to experimental data in a next step.


2010 ◽  
Vol 168-170 ◽  
pp. 1735-1741
Author(s):  
Mao Yan ◽  
Li Zhu ◽  
Yi Ping Wang ◽  
Ming Ze Zhu

With the high proportion of building energy consumption in the total energy consumption, it is of great importance to relieve the shortage of conventional energy resources and improve the building environment by incorporating solar energy into buildings. A new type solar roof panels were designed and tested in the present paper, which perfectly achieves the integration of solar equipment with building envelope. This panel can act as the construction component for building envelope and completely removes the double-skin mode for conventional solar equipment, as well as the functional equipment for heating and cooling collecting. Corrugated colored steel roof panel was tested under various climate conditions and operation conditions. The results show that in a typical sunny day the average heat collecting efficiency is 49% and the average cooling capacity is 100W/m2. In a cloudy day, the average heat collecting efficiency is 41% and the average cooling capacity is 84W/m2.


1979 ◽  
Author(s):  
E. C. Kern

A simple solar photovoltaic power system comprised of photovoltaic modules and a vapor-compression air conditioner is described and its performance characteristics are analyzed. The mathematical model expresses the system’s cooling capacity as a function of insolation, ambient air temperature, and indoor air temperature. The economics of photovoltaic power systems are generally optimum when the power supply matches exactly the load demand, thus eliminating the need for on-site energy storage or backup power. Correlations between predicted cooling capacities and air conditioning loads are presented as one measure of the economics of air conditioning with photovoltaics.


Sign in / Sign up

Export Citation Format

Share Document