An Alternative Field Test for Spot Air Conditioning Units

Author(s):  
Kau-Fui V. Wong ◽  
Diego Valde´s ◽  
Joshua Goad ◽  
Jesse Losada

U.S. governmental standards require that newly produced air conditioners have a SEER (seasonal energy efficiency ratio) rating of over 13, Federal Register (2001), [1]. This rating is closely tied to the COP (coefficient of performance). In fact, the SEER is 3.792 times the COP. Since COP varies with temperature loads, a standard testing method requires the unit to be tested at standard conditions of temperature and humidity. This requires the use of expensive climate control chambers, where the system can be loaded to the specified temperatures. The scope of this paper proposes a simpler, less expensive method to test spot AC (air conditioning) units, as an alternative field test to ASHRAE (American Society of Heating, Refrigeration, and Air-Conditioning Engineers) Standard 128 (2001), [2]. By taking temperature measurements of the appropriate control volume, the COP can be calculated. To obtain steady state, the control volume will be treated as very large (or infinite), placing the unit to be tested outdoors or in a room big enough so that delta T will remain constant. Themocouples in conjunction with data logging software are used to take the temperature measurements, and the mass flow rate is measured by assuming uniform flow and placing a flow meter in the center of the air exhaust, on the evaporator side. The entire system can be assembled into a portable unit composed of a computer, thermocouples, flow meter and a digital multimeter, alternatively, a handheld relative humidity and temperature sensor can be used, ASHRAE (2003), [3]. This would allow not only testing of units before they go into production, but having technicians in the field test the efficiency of units already in operation. The need may be there since there could be a significant drop in the SEER between factory conditions and installed unit, due to variations in duct sizes, losses due to non-ideal installations. Owing to the fact that the COP varies with loading, and our testing method requires no artificial control over loading temperatures, the current study is being conducted to find if the AC unit can perform up to its rating. The second law COP at environmental loading conditions is also evaluated for each of the five AC units tested. The calculated COPII (based on exergy) of the AC units tested do not vary as much (percentage-wise) as the rated COP. Their relative detrimental effects to the environment are probably not that much different from each other.

2011 ◽  
Vol 19 (01) ◽  
pp. 57-68 ◽  
Author(s):  
MIGUEL PADILLA

Commercial multiple evaporators variable refrigerant flow (VRF) HVAC systems present many advantages such as being energy saving and the capability of adjusting refrigerant mass flow rate according to the change of high rises occurrence. This paper deals with an experimental control volume exergy analysis in a VRF air conditioning system. The experimental results show that the brunt of the total exergy destroyed in the whole system occurs in the outdoor unit, where the exergy destroyed in the condenser is more important. The values of coefficient of performance (COP) obtained for the tests increase as the system reaches operational conditions imposed in every indoor unit zone. The VRF system analyzed is highly sensitive to the action of the constant speed compressor. The use of an inverter compressor improves the system performance by adjusting the power consumption according to the cooling load in the evaporators.


Author(s):  
Mohammed Dilawar ◽  
Mohammed Arif Hussain ◽  
Mohammed Akram Ullah Khan

<div><p><em>Perennial Efforts to combat power crises in newly found Telangana state, compelled to use hybrid source of power which is being catered to facilitate the needs of modern trends, life style, multinational business requirements which enforced the need to explore the modern application of solar energy run household and administrative block. Air conditioning requirement, which consumes more than 30% of the state procured power from different sources, which can be save and utilize for agriculture sector and other constructive needs.</em></p><p><em>        In Telangana State every commercial, administrative and elite residential block is equipped with air conditioning system where the temperature ranges between 32-43<sup>0</sup>C in summer season. Telangana State is attracting the world class business investors. This design can caters the world class needs therefore this paper explore the design and performance of solar power air-conditioning system, which is integrated with invertors, PV panels, solar charger and batteries. This design can be used in non-electrified rural arid areas to avoid the expenses of supplying electricity.</em></p><p><em>        This research project begins with the cooling load calculations for the selected space ideally whose dimensions are assumed to be one tone of refrigeration (3.5kW). Considering the basic parameters of cooling the photovoltaic cells has been deduced and necessary connections are arranged. </em></p><p><em>       To acquire the inlet and outlet temperatures of compressor, evaporator and condenser, data logging procedure is employed. The input power for this system as well as coefficient of performance for above said climatic conditions can be deduced. The COP varies from two to four for this system and these results are compared with the convectional system performance they both match with each other considerably.</em></p></div>


The aim of this work is to study the technological feasibility and economic viability of the electrification of small house lies in a farm 50km far away from Almadinah AlMunawwarah. Nowadays, solar powered air conditioning has witnessed an increased progress because air conditioning system is almost a must in every building in Saudi Arabia where the outside temperature in summer higher than 45◦ C. therefore, this paper consists of two parts: one to investigate the design and performance of solar powered air conditioning system as a case study integrated with photovoltaic (PV) system which consists of PV panels, solar charger, inverter and batteries. The second part is to study the feasibility to provide electricity for a farm lies in the remote area far 50 km from Almadinah. The first step in this project is the load calculations for the selected space including lighting, cooling and other necessary appliances. Based on the cooling load calculations for the specified room used as a case study, it was found the estimated cooling load about 1-ton refrigeration (3.52 kW), the photovoltaic (PV) system has been constructed and built with the necessary connections. Data logging system has been used to measure the temperatures at the main components in the cycle. The input powers for the system as well as the coefficient of performance (COP) for the system under Almadinah climatic conditions were measured along the day. The COP varies between 2.16 to 4.22 for the system and are in a good agreement with conventional system performance. Economically, the PV system found to be the optimal solution to provide the required load at an initial cost of 187,267 SR. The present work shows that the PV system has the potential to provide electricity for remote homes far from the grids with additional environmental benefit that otherwise not gained when using conventional fossil fuel


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 395
Author(s):  
Feng Cheng ◽  
Boqing Ding ◽  
Xiuwei Li

An absorption air-conditioning system is a good choice for green buildings. It has the superiority in the utilization of renewable energy and the refrigerant is environment-friendly. However, the performance of the traditional absorption system has been restricted by the energy waste in the thermal regeneration process. Capacitive deionization (CDI) regeneration is proposed as a potential method to improve system efficiency. In the new method-based air-conditioning system, strong absorbent solutions and pure water are acquired with the joint work of two CDI units. Nevertheless, the practical CDI device is composed of a lot of CDI units, which is quite different from the theoretical model. To reveal the performance of multiple CDI units, the model of the double/multi-stage CDI system has been developed. Analysis has been made to expose the influence of some key parameters. The results show the double-stage system has better performance than the single-stage system under certain conditions. The coefficient of performance (COP) could exceed 4.5, which is higher than the traditional thermal energy-driven system, or even as competitive as the vapor compression system. More stages with proper voltage distribution better the performance. It also provides the optimization method for the multi-stage CDI system.


2016 ◽  
Vol 819 ◽  
pp. 202-206
Author(s):  
Reza Maziar ◽  
Kasni Sumeru ◽  
M.Y. Senawi ◽  
Farid Nasir Ani

In this study, two experiments were performed, one with the conventional compression refrigeration cycle (CRC) and the other with an ejector refrigeration cycle (ERC). The CRC system for automotive air conditioning was designed, fabricated and experiments were conducted. The system was then retrofitted with an ejector as the expansion device and experiments were repeated for the ERC system. Calculations of the entrainment ratio, compressor compression ratio and coefficient of performance (COP) were made for each cycle. The calculations showed that ERC has some advantages over the CRC. In this study, an average improvement of 5% in COP has been obtained for the ERC compared with the CRC.


2010 ◽  
Vol 31 (2) ◽  
pp. 77-94 ◽  
Author(s):  
Agnieszka Kuczyńska ◽  
Władysław Szaflik

Absorption and adsorption chillers applied to air conditioning systemsThis work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperatureTdes= 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling waterTc= 25 °C and temperature in evaporatorTevap= 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.


2018 ◽  
Vol 40 (2) ◽  
pp. 220-236 ◽  
Author(s):  
Irfan Ahmad Gondal

This study presents an innovative concept of a compact integrated solar-thermoelectric module that can form part of the building envelope. The heating/cooling modes use the photovoltaic electrical current to power the heat pump. The experimental analysis was carried out and the results of coefficient of performance were in the range 0.5–1 and 2.6–5 for cooling and heating functions, respectively. The study demonstrates that thermoelectric cooler can effectively be used for heating, ventilation, and air conditioning applications by integrating with solar panels especially in cooling applications. The system is environmentally friendly and can contribute in the implementation of zero energy buildings concept. Practical application: In order to help address the challenge of climate change and associated environmental effects, there is continuous demand for new technologies and applications that can be readily integrated into day-to-day life as a means of reducing anthropogenic impact. Heating, ventilation, and air conditioning, as one of the largest energy consumers in buildings, is the focus of many researchers seeking to reduce building energy use and environmental impact. This article proposes using facades and windows that have an integrated modules of solar photovoltaic cells and thermoelectric devices that are able to work together to achieve heating and cooling effects as required by the building without requiring any external operational power.


Author(s):  
Ali Al-Alili ◽  
Yunho Hwang ◽  
Reinhard Radermacher

In hot and humid regions, removal of moisture from the air represents a considerable portion of the air conditioning load. Conventionally, air conditioning systems have to lower the air temperature below its dew point to accomplish dehumidification. Desiccant air conditioners offer a solution to meet the humidity and temperature requirements of buildings via decoupling latent and sensible loads. In this work, the performance of a new desiccant material is investigated experimentally. This desiccant material can be regenerated using a low temperature heat source, as low as 45°C. It also has a unique S-shape isotherm. The effects of the process air stream’s temperature and humidity, the regeneration temperature, the ventilation mass flow rate, and the desiccant wheel’s rotational speed on the cycle performance are investigated. ARI-humid conditions are used as a baseline and the moisture mass balance is maintained within 5%. The results are presented in terms of the moisture removal rate and latent coefficient of performance (COPlat). The results show a desiccant wheel’s COPlat higher than unity when it is coupled with an enthalpy wheel.


2020 ◽  
Vol 10 (10) ◽  
pp. 3622 ◽  
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

The electrical power consumption of refrigeration equipment leads to a significant influence on the supply network, especially on the hottest days during the cooling season (and this is besides the conventional electricity problem in Iraq). The aim of this work is to investigate the energy performance of a solar-driven air-conditioning system utilizing absorption technology under climate in Baghdad, Iraq. The solar fraction and the thermal performance of the solar air-conditioning system were analyzed for various months in the cooling season. It was found that the system operating in August shows the best monthly average solar fraction (of 59.4%) and coefficient of performance (COP) (of 0.52) due to the high solar potential in this month. Moreover, the seasonal integrated collector efficiency was 54%, providing a seasonal solar fraction of 58%, and the COP of the absorption chiller was 0.44, which was in limit, as reported in the literature for similar systems. A detailed parametric analysis was carried out to evaluate the thermal performance of the system and analyses, and the effect of design variables on the solar fraction of the system during the cooling season.


Sign in / Sign up

Export Citation Format

Share Document