Theoretical Optimization of Cascading Magnets’ Structure for Oxygen Enrichment by Gradient Magnetic Fields

Author(s):  
Fengchao Li ◽  
Li Wang ◽  
Ping Wu ◽  
Shiping Zhang

Oxygen molecules are paramagnetic while nitrogen molecules are diamagnetic. In the same gradient magnetic field, the magnetizing forces on oxygen molecules are stronger than those on nitrogen molecules, which in opposite directions. The intercepting effect on oxygen molecules by gradient magnetic field can be used for oxygen enrichment from air. The structure, which is called multi-channel cascading magnets array frame in the paper, are optimized by additional yokes. By comparison of distributions of magnetic field in multi-channel array without yokes and that with yokes, the additional yokes can eliminate the differences among different magnetic spaces in multi-channel cascading magnets’ arrays and enhances the magnetic flux densities in spaces. Joining magnets together in the length direction can make the air stay longer in the ‘magnetic sieve’ and raise the oxygen concentration of air flowing out from the optimized multi-channel cascading magnets’ arrays. The inside additional yoke can used to avoid the gradient magnetic field at the joints of the magnets and get near uniform magnetic field along length direction. The optimized multi-channel cascading magnets’ array frames can effectively promote the development of oxygen enrichment from air by “magnetic sieve”.

2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2012 ◽  
Vol 27 (40) ◽  
pp. 1250233 ◽  
Author(s):  
ROSY TEH ◽  
BAN-LOONG NG ◽  
KHAI-MING WONG

We present finite energy SU(2) Yang–Mills–Higgs particles of one-half topological charge. The magnetic fields of these solutions at spatial infinity correspond to the magnetic field of a positive one-half magnetic monopole at the origin and a semi-infinite Dirac string on one-half of the z-axis carrying a magnetic flux of [Formula: see text] going into the origin. Hence the net magnetic charge is zero. The gauge potentials are singular along one-half of the z-axis, elsewhere they are regular.


2001 ◽  
Author(s):  
Haim H. Bau

Abstract In this paper, I review some of our work on the use of magneto hydrodynamics (MHD) for pumping, controlling, and stirring fluids in microdevices. In many applications, one operates with liquids that are at least slightly conductive such as biological fluids. By patterning electrodes inside flow conduits and subjecting these electrodes to potential differences, one can induce electric currents in the liquid. In the presence of a magnetic field, a Lorentz force is generated in a direction that is perpendicular to both the magnetic and electric fields. Since one has a great amount of freedom in patterning the electrodes, one can induce forces in various directions so as to generate complex flows including “guided” flows in virtual, wall-less channels. The magnetic flux generators can be either embedded in the device or be external. Despite their unfavorable scaling (the magnitude of the forces is proportional to the fluid volume), MHD offers many advantages such as the flexibility of applying forces in any desired direction and the ability to adjust the magnitude of the forces by adjusting either the electric and/or magnetic fields. We provide examples of (i) MHD pumps; (ii) controlled networks of conduits in which each conduit is equipped with a MHD actuator and by controlling the voltage applied to each actuator, one can direct the liquid to flow in any desired way without a need for valves; and (iii) MHD stirrers including stirrers that exhibit chaotic advection.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 467
Author(s):  
Fayçal Hammad ◽  
Alexandre Landry ◽  
Parvaneh Sadeghi

The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered, and the energy levels occupied by the particles are derived as functions of the magnetic field, the radius of the massive sphere and the total mass of the latter. As no assumption is made on the relative strengths of the particles’ interaction with the gravitational and magnetic fields, the relevance of our results to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense, is discussed.


1993 ◽  
Vol 141 ◽  
pp. 143-146
Author(s):  
K. Petrovay ◽  
G. Szakály

AbstractThe presently widely accepted view that the solar dynamo operates near the base of the convective zone makes it difficult to relate the magnetic fields observed in the solar atmosphere to the fields in the dynamo layer. The large amount of observational data concerning photospheric magnetic fields could in principle be used to impose constraints on dynamo theory, but in order to infer these constraints the above mentioned “missing link” between the dynamo and surface fields should be found. This paper proposes such a link by modeling the passive vertical transport of thin magnetic flux tubes through the convective zone.


RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 39595-39603
Author(s):  
Yinying Tan ◽  
Yamei Jin ◽  
Na Yang ◽  
Zhe Wang ◽  
Zhengjun Xie ◽  
...  

3D magnetic fields have the potential to improve the quality of food after freeze-thawing.


1974 ◽  
Vol 60 ◽  
pp. 275-292 ◽  
Author(s):  
R. D. Davies

Observations of Class I OH maser sources show a range of features which are predicted on the basis of Zeeman splitting in a source magnetic field. Magnetic field strengths of 2 to 7 mG are derived for eight OH maser sources. The fields in all the clouds are directed in the sense of galactic rotation. A model of W3 OH is proposed which incorporates the magnetic field data. It is shown that no large amount of magnetic flux or angular momentum has been lost since the condensation from the interstellar medium began.


2008 ◽  
Vol 320 (3-4) ◽  
pp. 171-181 ◽  
Author(s):  
Jun Cai ◽  
Li Wang ◽  
Ping Wu ◽  
Zhengqiang Li ◽  
Lige Tong ◽  
...  

Author(s):  
Gui-Ping Zhu ◽  
Nam-Trung Nguyen

This paper reports the numerical and experimental investigation on magnetic particle concentration in a uniform magnetic field. The flow system consists of water-based ferrofluid and glycerol/DI water mixture streams. Two regimes were observed with spreading and mixing phenomena. With a low magnetic field strength, the spread of magnetic particles is caused by improved diffusion migration. With a relatively high field strength, instability at the interface would occur due to the mismatch in magnetization of the fluid streams. The transport of magnetic particles is induced by chaotic mixing of the fluids caused by a secondary flow. The mixing phenomena are characterized by magnetic flux density. For configuration with flow rate and viscosity ratio (between diamagnetic and magnetic streams) being set at 1 and 0.5, the mixing efficiency analyzed based on magnetic particles concentration increases approximately by 0.3 at around 3.5 mT. This value of magnetic flux density indicates the requirement on instability inception. The mixing efficiency increases with magnetic flux density increases further. Complete mixing can be achieved with a magnetic flux density at around 10 mT. The magnetic approach offers a wireless, heat-free and pH-independent solution for a lab-on-a-chip system.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
E. Hirvijoki ◽  
J. Decker ◽  
A. J. Brizard ◽  
O. Embréus

In this paper, we present the guiding-centre transformation of the radiation–reaction force of a classical point charge travelling in a non-uniform magnetic field. The transformation is valid as long as the gyroradius of the charged particles is much smaller than the magnetic field non-uniformity length scale, so that the guiding-centre Lie-transform method is applicable. Elimination of the gyromotion time scale from the radiation–reaction force is obtained with the Poisson-bracket formalism originally introduced by Brizard (Phys. Plasmas, vol. 11, 2004, 4429–4438), where it was used to eliminate the fast gyromotion from the Fokker–Planck collision operator. The formalism presented here is applicable to the motion of charged particles in planetary magnetic fields as well as in magnetic confinement fusion plasmas, where the corresponding so-called synchrotron radiation can be detected. Applications of the guiding-centre radiation–reaction force include tracing of charged particle orbits in complex magnetic fields as well as the kinetic description of plasma when the loss of energy and momentum due to radiation plays an important role, e.g. for runaway-electron dynamics in tokamaks.


Sign in / Sign up

Export Citation Format

Share Document