Teaching Design Methodologies Across Engineering Disciplines

Author(s):  
Cameron J. Turner

The Colorado School of Mines (CSM) offers a combined capstone design experience for mechanical, civil, electrical and environmental engineering students. In a recent re-invention of our design curriculum, a new emphasis on design methodologies has been implemented. Many of these design methods have origins in the design of electro-mechanical products, and it is certainly in these areas where the most vibrant design communities seem to reside. Yet in a combined setting, analogous design processes appear to exist in a broader engineering design community. This paper describes the capstone design program at CSM, with a focus on the methods that we are teaching and how they translate between disciplines. The lessons learned in such a translation not only illuminate how engineering design may differ in other disciplines, but also may reveal new perspectives on mechanical design processes.

Author(s):  
Ken Tallman

Research being conducted in an engineering capstone design course analyzes student creativity and its connection to metacognition. Data collected from questionnaires, video recordings, and interviews willattempt to show that creativity in the design process and metacognitive understanding of creative activity are important factors in successful engineering design.Motivation for this research comes from the observation that undergraduate engineering students, including those in senior years, have difficulty explaining their design processes. They often have limited understanding of their creative accomplishments as well as a limited ability to explain what makes their approach distinctive or effective.Future research will build on the methodology described here, including a more explicit framework for identifying and assessing creativity in engineering design.


Author(s):  
LeRoy E. Taylor ◽  
Mark R. Henderson

Abstract This paper describes the roles of features and abstraction mechanisms in the mechanical design process, mechanical designs, and product models of mechanical designs. It also describes the relationship between functions and features in mechanical design. It is our experience that many research efforts exist in the areas of design and product modeling and, further, that these efforts must be cataloged and compared. To this end, this paper culminates with the presentation of a multi-dimensional abstraction space which provides a unique framework for (a) comparing mechanical engineering design research efforts, (b) relating conceptual objects used in the life cycle of mechanical products, and (c) defining a product modeling space.


Author(s):  
Jining Qiu ◽  
Bo Zhang ◽  
Huimin Dong ◽  
Yuan Gao

The ability to solve engineering design problems using academic knowledge flexibly is essential for mechanical engineering students and is also quality that employers look for. This paper introduces how students could explore and experience the process of mechanical design in the course project of Theory of Machines and Mechanisms (TMM) in Dalian University of Technology (DUT) through sharing the design process of accelerator (gear-box) in wind power generator by one representative team of students in the course project. Firstly, design requirements are set based on industrial need and the choosing of the best scheme of multi-stage gear train is conducted. Following that is the design of kinematic parameters of gears and the evaluation of selected system. Then, a possible solution to control the input speed of the generator is proposed. In the end, a survey to 279 students who participate in the course project shows the importance of course project in cultivating their ability to apply knowledge in design.


Author(s):  
Farrah Fayyaz

There is a growing trend in engineering education to increase the societal awareness among theengineering graduates, so that the engineering solutions proposed by the engineers are more sustainable. To achieve this, one of the efforts in Concordia University is to ask capstone students to discuss and implement (wherever possible) ethical, legal, social, environmental, and entrepreneurial aspects of their capstone design. Students are given two lectures during the capstone year which provides them with prompts to identify and think beyond their personal biases and perceptions of the society. At the end of the term, each capstone team is asked to define engineering failure. The aim for this is for graduating students to have a well thought of idea of the engineering design failure before they enter the workplace. This article explains the two phases (lectures) of the capstone lectures related to the ethical, legal, societal, environmental, and entrepreneurial aspects of an engineering design. Additionally, the article aims to analyze the definitions of engineering failure submitted by the engineering students at the end of the capstone year to identify keywords and terms that the graduating engineering students attribute to success and failure of an engineering design. The objective of the paper is to open the discussion among engineering educators for incorporating ideas in their courses that can improve engineering students’ understanding of a sustainable design and assess the success of these strategies.


Author(s):  
Chris Rennick ◽  
Eugene Li

The capstone design project is ubiquitous in engineering programs worldwide, and is seen by students as the single most important activity in their undergraduate careers. Staff and faculty at the University of Waterloo identified three issues with the current capstone process: students are unaware of industrial suppliers, they lack multi-disciplinary exposure, and they often struggle to identify "good" needs for their projects. The Engineering IDEAs Clinic, with support from instructors and staff from across Engineering, developed a conference for students to address these issues. EngCon – aimed at students in third/fourth year – brought students together with their peers from other programs, instructors from across the Faculty, and representatives from suppliers (both external industry, and internal support units) with the goal of improving their capstone projects. This paper presents the design and implementation of EngCon in both 2017 and 2018 with lessons learned from offering a large coordinated set of workshops aimed at students as they enter their capstone design projects.  


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Ferris M. Pfeiffer ◽  
Rachel E. Bauer ◽  
Steve Borgelt ◽  
Suzanne Burgoyne ◽  
Sheila Grant ◽  
...  

The creative process is fun, complex, and sometimes frustrating, but it is critical to the future of our nation and progress in science, technology, engineering, mathematics (STEM), as well as other fields. Thus, we set out to see if implementing methods of active learning typical to the theater department could impact the creativity of senior capstone design students in the bioengineering (BE) department. Senior bioengineering capstone design students were allowed to self-select into groups. Prior to the beginning of coursework, all students completed a validated survey measuring engineering design self-efficacy. The control and experimental groups both received standard instruction, but in addition the experimental group received 1 h per week of creativity training developed by a theater professor. Following the semester, the students again completed the self-efficacy survey. The surveys were examined to identify differences in the initial and final self-efficacy in the experimental and control groups over the course of the semester. An analysis of variance was used to compare the experimental and control groups with p < 0.05 considered significant. Students in the experimental group reported more than a twofold (4.8 (C) versus 10.9 (E)) increase of confidence. Additionally, students in the experimental group were more motivated and less anxious when engaging in engineering design following the semester of creativity instruction. The results of this pilot study indicate that there is a significant potential to improve engineering students' creative self-efficacy through the implementation of a “curriculum of creativity” which is developed using theater methods.


Author(s):  
Justine Boudreau ◽  
Hanan Anis

Engineering students at the University of Ottawa are exposed to engineering design in first- and second-year courses. Both courses are open to all engineering students and are multidisciplinary in nature. Students work in teams to deliver a physical prototype by the end of the term. The design projects are all community-based and involve a client from the local community with a specific unmet need. Examples of such clients include local hospitals, accessibility organizations, Ottawa police, Indigenous elders and many more. The client meets with the students a minimum of three times throughout the semester to provide the problem definition and give feedback to the student groups at different stages of the design process. The goal of this paper is to share best practices in selecting and delivering client-based projects targeting first- and second-year students in multidisciplinary engineering teams. The paper discusses the choice of project themes and specific projects. In addition, it presents lessons learned based on student-client interactions, lab manager-client interactions and client satisfaction. Examples are presented from the past three years of delivering such engineering design courses, with testimonials from clients and students.


Author(s):  
Mohamed Galaleldin ◽  
Hanan Anis ◽  
Patrick Dumond ◽  
David Knox

 Abstract –Collaborative Project Based Learning (CPBL) is known for enhancing deep learning, professional skills development, student engagement and motivation, cultivating interdependence in learning, thinking, problem solving, and creating interest and excitement in learning. This article describes the impact of an engineering design course on first-year engineering students. Student performance was evaluated before and after taking the course using a pre-and-post design skill assessment test, peer feedback evaluations, and thematic analysis of each student’s self-reflection of lessons learned. Initial analysis of the data indicates that a CPBL environment has a significantly positive impact on the development of engineering students’ ability to describe the engineering design process and relate it directly to real-world problems. Students also realized the importance of communication, team work, investigation and project management skills.


Author(s):  
Jeremy J. Laliberté ◽  
C. Schramm ◽  
A. L. Steele

We report on a preliminary study of discrete design processes and their timing, when undergraduate engineering students undertake project work. The method of the study followed the approach undertaken by others1,2 where the project design cycle is broken into discrete stages, for example problem definition, modeling, feasibility analysis and communication. In these previous studies the design was over approximately 3 hours1 using a single session design problem and required talking aloud by the designer, so that an observer could assess the stages being undertaken at given time intervals. Our study is over one or two terms and uses self-reporting by students to the criteria. Weekly emails prompted students with individualized links to a webform to report the type of design work done in the previous week. Because a week is a relatively long interval, the web form asks the students to report in terms of their primary (most effort and time) and secondary tasks. Similar to previous studies, this study compares the time spent and the points in the design cycle when certain process are undertaken or revisited. Our results, however, describe the design process over various durations (one term projects or full-year capstone projects), for different years of study (primarily, third and fourth year), different fields of engineering (from Aerospace, Civil, Mechanical, Electrical as well as Systems) and finally for different sized teams (from pairs of students in course projects to teams of twenty in Mechanical and Aerospace capstone projects). Comparisons will also be made between the design processes of different students, based on their final grade for their project. This first year of study is seen as a preliminary year to a longer and broader study, and the paper present our preliminary results as well as lessons learned in the areas of self-reporting and sizeable, longer-term data collection.


Author(s):  
Sean Maw

During the 2015/16 academic year, a pilot course at the University of Saskatchewan was offered to senior engineering students. The pilot course was meant to offer an entrepreneurial version of the standard 4th year capstone design course. It also created an opportunity for students to work with students from engineering disciplines other than their own. Two design groups, each consisting of four students, were formed. This paper describes the structure of the course, how the entrepreneurial content and multidisciplinary aspects were handled, and a variety of lessons that were learned that may be of value to other institutions considering similar ventures.The College’s capstone design courses had the weightings of two regular 3-credit courses, running from the start of the Fall term to the end of the Winter term. The most fundamental differences between this course and the standard 4th year capstone course were i) the students identified their own design problem, and ii) they formed multidisciplinary teams to solve their problem. Both of these differences created significant challenges in terms of organizing and running the course. Students from Electrical Engineering, Computer Engineering, and Engineering Physics were full participants in the course. Students from Mechanical Engineering were given the opportunity to participate on a one course credit basis i.e. they still had to take the standard 4th year design course in addition to the entrepreneurial version.Many lessons have been learned from the experience of developing and teaching this course. Issues that will be discussed in the paper include, but will not be limited to: integrating the different learning outcome needs of the different departments involved, managing the uncertainty of the design problems undertaken, integrating entrepreneurship into the design course, talking about design to students from different disciplines, managing “sub-contractor” students in capstone projects, evaluation, scheduling of classes, multidisciplinary supervision, client interaction and evaluation of student work, peer assessment, and student group dynamics.


Sign in / Sign up

Export Citation Format

Share Document