Innovative Design of Lightweight on Board Hydrogen Storage Tank

Author(s):  
Samir N. Shoukry ◽  
Gergis W. William ◽  
Jacky C. Prucz ◽  
Thomas H. Evans

The hydrogen economy envisioned in the future requires safe and efficient means of storing hydrogen fuel for either use onboard vehicles, delivery on mobile transportation systems or high-volume storage in stationary systems. The main emphasis of this work is placed on the high -pressure storing of gaseous hydrogen on-board vehicles. As a result of its very low density, hydrogen gas has to be stored under very high pressure, ranging from 350 to 700 bars for current systems, in order to achieve practical levels of energy density in terms of the amount of energy that can be stored in a tank of a given volume. This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs. The results indicated that a stress reduction could be achieved by a geometry change only, which could increase the amount of pressure sustained inside the vessel and ultimately increase the amount of hydrogen stored per volume. Such reductions in the stresses will decrease the thickness dimension required to achieve a particular factor of safety in a direct comparison to a cylindrical design.

2021 ◽  
Vol 9 (3) ◽  
pp. 348
Author(s):  
Xue Long ◽  
Lu Liu ◽  
Shewen Liu ◽  
Shunying Ji

In cold regions, ice pressure poses a serious threat to the safe operation of ship hulls and fixed offshore platforms. In this study, a discrete element method (DEM) with bonded particles was adapted to simulate the generation and distribution of local ice pressures during the interaction between level ice and vertical structures. The strength and failure mode of simulated sea ice under uniaxial compression were consistent with the experimental results, which verifies the accuracy of the discrete element parameters. The crushing process of sea ice acting on the vertical structure simulated by the DEM was compared with the field test. The distribution of ice pressure on the contact surface was calculated, and it was found that the local ice pressure was much greater than the global ice pressure. The high-pressure zones in sea ice are mainly caused by its simultaneous destruction, and these zones are primarily distributed near the midline of the contact area of sea ice and the structure. The contact area and loading rate are the two main factors affecting the high-pressure zones. The maximum local and global ice pressures decrease with an increase in the contact area. The influence of the loading rate on the local ice pressure is caused by the change in the sea ice failure mode. When the loading rate is low, ductile failure of sea ice occurs, and the ice pressure increases with the increase in the loading rate. When the loading rate is high, brittle failure of sea ice occurs, and the ice pressure decreases with an increase in the loading rate. This DEM study of sea ice can reasonably predict the distribution of high-pressure zones on marine structures and provide a reference for the anti-ice performance design of marine structures.


1981 ◽  
Vol 103 (4) ◽  
pp. 322-329 ◽  
Author(s):  
T. E. Stripling ◽  
R. G. Holter

Several long-distance, high-volume coal slurry transportation systems are planned or proposed for the United States. These new systems offer a method of transport that is both economical and environmentally attractive. The design of these systems will be a challenge to the pipeline engineer since an integrated, system design of several components is necessary to achieve an optimum overall effect. The pipeline, pump stations, instrumentation and controls, slurry preparation, and utilization facilities must all be considered in the design. The purpose of this paper is to describe the system components of a large coal slurry transportation system in detail and to show the special design considerations required for the overall system design considering the interrelationships of the various components.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Zichen Liu ◽  
Xiaodong Hu ◽  
Zhiwei Yang ◽  
Bin Yang ◽  
Jingkai Chen ◽  
...  

In order to clarify the role of different post-weld heat treatment processes in the manufacturing process, welding tests, post-weld heat treatment tests, and finite element analysis (FEA) are carried out for 12C1MoV steel pipes. The simulated temperature field and residual stress field agree well with the measured results, which indicates that the simulation method is available. The influence of post-weld heat treatment process parameters on residual stress reduction results is further analyzed. It is found that the post weld dehydrogenation treatment could not release residual stress obviously. However, the residual stress can be relieved by 65% with tempering treatment. The stress relief effect of “post weld dehydrogenation treatment + temper heat treatment” is same with that of “temper heat treatment”. The higher the temperature, the greater the residual stress reduction, when the peak temperature is at 650–750 °C, especially for the stress concentration area. The longer holding time has no obvious positive effect on the reduction of residual stress.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Shi-Jun Wu ◽  
Can-Jun Yang ◽  
Ying Chen ◽  
Yan-Qing Xie

The cone valve plays an important role in high-pressure sealing applications. In this paper, a new high-pressure cone valve, based on the titanium alloy poppet-to-polyetheretherketone seat sealing structure, is proposed for deep-sea gas-tight water samplers. In order to study the sealing performance of the new valve, both the conforming poppet-seat contact model and the nonconforming poppet-seat contact model were evaluated. Finite element analysis based on the two models was performed and validated by experiments. The results indicate that the nonconforming poppet-seat contact model has a better sealing performance than the conforming poppet-seat contact model. The new cone valve also was applied in a gas-tight hydrothermal fluid sampler and successfully tested in a sea trial during the KNOX18RR cruise from 9 July to 12 August 2008.


Hyomen Kagaku ◽  
2015 ◽  
Vol 36 (11) ◽  
pp. 562-567
Author(s):  
Hisao MATSUNAGA ◽  
Junichiro YAMABE ◽  
Saburo MATSUOKA

2013 ◽  
Vol 391 ◽  
pp. 168-171
Author(s):  
Shou Jun Wang ◽  
Li Bo Yang

When it comes to the design of a wave-frame,empirical design is always adopted domestic,which is relatively conservative on stiffness and intensity and prefer a bigger factor of safety,thus these bring many uncertainties to the wave-frame.In order to reduce the negative effect to the wave system,the analysis of the wave-frame based on ANSYS is executed to have a knowledge of the weakness and the deformation of various parts.On the permise of ensuring the stiffness and intensity,with the method of grouping and using different profile steel,the purpose is to reduce the mass snd the negative effect brought by mass,and achieve the goal of optimization.


Author(s):  
Z. Y. Li ◽  
C. L. Zhou ◽  
Y. Z. Zhao ◽  
Z. L. Hua ◽  
L. Zhang ◽  
...  

Crack growth analysis (CGA) was applied to estimate the cycle life of the high-pressure hydrogen equipment constructed by the practical materials of 4340 (two heats), 4137, 4130X, A286, type 316 (solution-annealed (SA) and cold-worked (CW)), and type 304 (SA and CW) in 45, 85 and 105 MPa hydrogen and air. The wall thickness was calculated following five regulations of the High Pressure Gas Safety Institute of Japan (KHK) designated equipment rule, KHKS 0220, TSG R0002, JB4732, and ASME Sec. VIII, Div. 3. We also applied CGA for four typical model materials to discuss the effect of ultimate tensile strength (UTS), pressure and hydrogen sensitivity on the cycle life of the high-pressure hydrogen equipment. Leak before burst (LBB) was confirmed in all practical materials in hydrogen and air. The minimum KIC required for LBB of the model material with UTS of even 1500 MPa was 170 MPa·m0.5 in 105 MPa. Cycle life qualified 103 cycles for all practical materials in air. In 105 MPa hydrogen, the cycle life by KIH was much shorter than that in air for two heats of 4340 and 4137 sensitive to hydrogen gas embrittlement (HGE). The cycle life of type 304 (SA) sensitive to HGE was almost above 104 cycles in hydrogen, while the cycle life of type 316 (SA and CW) was not affected by hydrogen and that of A286 in hydrogen was near to that in air. It was discussed that the cycle life increased with decreasing pressure or UTS in hydrogen. This behavior was due to that KIH increased or fatigue crack growth (FCG) decreased with decreasing pressure or UTS. The cycle life data of the model materials under the conditions of the pressure, UTS, KIH, FCG and regulations in both hydrogen and air were proposed quantitatively for materials selection for high-pressure hydrogen storage.


Sign in / Sign up

Export Citation Format

Share Document