Thermoeconomic Diagnosis Applied to the Transient Operation of a Microturbine

Author(s):  
Vittorio Verda ◽  
Giorgia Baccino

The use of thermoeconomic analysis for the diagnosis of malfunctions causing efficiency reductions in energy systems has been widely discussed in the literature. The main objectives of thermoeconomic procedures are to discover malfunctions, locate the components where they have taken place, help one to identify the possible causes and quantify the impact in terms of additional energy resource consumption. In this paper, thermoeconomic diagnosis is applied to discover possible malfunctions of a microturbine. The procedure consists in the use of compact productive models of the components, which relate their exergetic products to their resources. Two different types of productive models are used: linear model and non linear model. The latter is built using neural networks. The main interest in the proposed application is that transient operation of the system is investigated. Results show that diagnosis can be performed both in steady state and transient conditions. The neural network model allows one to detect the anomaly with better accuracy than the linear model.

2014 ◽  
Vol 22 (03) ◽  
pp. 1450013 ◽  
Author(s):  
J. K. DABAS ◽  
SUDHIR KUMAR ◽  
A. K. DODEJA ◽  
K. S. KASANA

The impact of transient conditions along with varied capillary tube length and charge quantity over the performance of a simple refrigeration system under all time transient operations has been investigated in a specially designed experimental setup. A maximum drop of 75% in the coefficient of performance (COP) of the system was recorded by the end of the transient cooling period. The continuous deterioration in performance from start to end of the transient cooling job can be well minimized by the optimum selection of capillary tube length and charge quantity. This paper refers some of the existing methods to determine the appropriate length of the coiled capillary tube and charge quantity for a newly designed refrigeration machine working under steady state conditions and compares the experimental results of transient operation with these. Optimum charge quantity for transient operation in the present study is 3.5% to 5% less than that calculated by the existing analytical and numerical methods. The optimum length of coiled capillary tube for transient operation as found in this experimental study matches approximately with the length predicted by the existing dimensionless correlation on the basis of design parameters as estimated towards the end of the transient cooling period.


2021 ◽  
Vol 2 ◽  
Author(s):  
Bei Li ◽  
Robin Roche

In the multi-energy supply microgrid, different types of energy can be scheduled from a “global” view, which can improve the energy utilization efficiency. In addition, hydrogen storage system performs as the long-term storage is considered, which can promote more renewable energy installed in the local consumer side. However, when there are large numbers of grid-connected multi-energy microgrids, the scheduling of these multiple microgrids in real-time is a problem. Because different types of devices, three types of energy, and three types of utility grid networks are considered, which make the dispatching problem difficult. In this paper, a two-stage coordinated algorithm is adopted to operate the microgrids: day-ahead scheduling and real-time dispatching. In order to reduce the time taken to solve the scheduling problem, and improve the scheduling performance, approximate dynamic programming (ADP) is used in real-time operation. Different types of value function approximations (VFA), i.e., linear function, nonlinear function, and neural network are compared to study about the influence of the VFA on the decision results. Offline and online processes are developed to study the impact of the historical data on the regression of VFA. The results show that the neural network based ADP one-step decision algorithm has almost the same performance as the Global optimization algorithm, and the highest performance among all others Local optimization algorithms. The total operation cost relative error is less than 3%, while the running time is only 31% of the Global algorithm. In the neural network based ADP, the key technology is continuously updating the training dataset online, and adopting an appropriate neural network structure, which can at last improve the scheduling performance.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 519
Author(s):  
Alice Mugnini ◽  
Gianluca Coccia ◽  
Fabio Polonara ◽  
Alessia Arteconi

The integration of multi-energy systems to meet the energy demand of buildings represents one of the most promising solutions for improving the energy performance of the sector. The energy flexibility provided by the building is paramount to allowing optimal management of the different available resources. The objective of this work is to highlight the effectiveness of exploiting building energy flexibility provided by thermostatically controlled loads (TCLs) in order to manage multi-energy systems (MES) through model predictive control (MPC), such that energy flexibility can be regarded as an additional energy source in MESs. Considering the growing demand for space cooling, a case study in which the MPC is used to satisfy the cooling demand of a reference building is tested. The multi-energy sources include electricity from the power grid and photovoltaic modules (both of which are used to feed a variable-load heat pump), and a district cooling network. To evaluate the varying contributions of energy flexibility in resource management, different objective functions—namely, the minimization of the withdrawal of energy from the grid, of the total energy cost and of the total primary energy consumption—are tested in the MPC. The results highlight that using energy flexibility as an additional energy source makes it possible to achieve improvements in the energy performance of an MES building based on the objective function implemented, i.e., a reduction of 53% for the use of electricity taken from the grid, a 43% cost reduction, and a 17% primary energy reduction. This paper also reflects on the impact that the individual optimization of a building with a multi-energy system could have on other users sharing the same energy sources.


2017 ◽  
Vol 76 (3) ◽  
pp. 107-116 ◽  
Author(s):  
Klea Faniko ◽  
Till Burckhardt ◽  
Oriane Sarrasin ◽  
Fabio Lorenzi-Cioldi ◽  
Siri Øyslebø Sørensen ◽  
...  

Abstract. Two studies carried out among Albanian public-sector employees examined the impact of different types of affirmative action policies (AAPs) on (counter)stereotypical perceptions of women in decision-making positions. Study 1 (N = 178) revealed that participants – especially women – perceived women in decision-making positions as more masculine (i.e., agentic) than feminine (i.e., communal). Study 2 (N = 239) showed that different types of AA had different effects on the attribution of gender stereotypes to AAP beneficiaries: Women benefiting from a quota policy were perceived as being more communal than agentic, while those benefiting from weak preferential treatment were perceived as being more agentic than communal. Furthermore, we examined how the belief that AAPs threaten men’s access to decision-making positions influenced the attribution of these traits to AAP beneficiaries. The results showed that men who reported high levels of perceived threat, as compared to men who reported low levels of perceived threat, attributed more communal than agentic traits to the beneficiaries of quotas. These findings suggest that AAPs may have created a backlash against its beneficiaries by emphasizing gender-stereotypical or counterstereotypical traits. Thus, the framing of AAPs, for instance, as a matter of enhancing organizational performance, in the process of policy making and implementation, may be a crucial tool to countering potential backlash.


Author(s):  
Anne Nassauer

This book provides an account of how and why routine interactions break down and how such situational breakdowns lead to protest violence and other types of surprising social outcomes. It takes a close-up look at the dynamic processes of how situations unfold and compares their role to that of motivations, strategies, and other contextual factors. The book discusses factors that can draw us into violent situations and describes how and why we make uncommon individual and collective decisions. Covering different types of surprise outcomes from protest marches and uprisings turning violent to robbers failing to rob a store at gunpoint, it shows how unfolding situations can override our motivations and strategies and how emotions and culture, as well as rational thinking, still play a part in these events. The first chapters study protest violence in Germany and the United States from 1960 until 2010, taking a detailed look at what happens between the start of a protest and the eruption of violence or its peaceful conclusion. They compare the impact of such dynamics to the role of police strategies and culture, protesters’ claims and violent motivations, the black bloc and agents provocateurs. The analysis shows how violence is triggered, what determines its intensity, and which measures can avoid its outbreak. The book explores whether we find similar situational patterns leading to surprising outcomes in other types of small- and large-scale events: uprisings turning violent, such as Ferguson in 2014 and Baltimore in 2015, and failed armed store robberies.


Author(s):  
Amy E. Nivette ◽  
Renee Zahnow ◽  
Raul Aguilar ◽  
Andri Ahven ◽  
Shai Amram ◽  
...  

AbstractThe stay-at-home restrictions to control the spread of COVID-19 led to unparalleled sudden change in daily life, but it is unclear how they affected urban crime globally. We collected data on daily counts of crime in 27 cities across 23 countries in the Americas, Europe, the Middle East and Asia. We conducted interrupted time series analyses to assess the impact of stay-at-home restrictions on different types of crime in each city. Our findings show that the stay-at-home policies were associated with a considerable drop in urban crime, but with substantial variation across cities and types of crime. Meta-regression results showed that more stringent restrictions over movement in public space were predictive of larger declines in crime.


2021 ◽  
pp. 193896552110335
Author(s):  
John W. O’Neill ◽  
Jihwan Yeon

In recent years, short-term rental platforms in the lodging sector, including Airbnb, VRBO, and HomeAway, have received extensive attention and emerged as potentially alternative suppliers of services traditionally provided by established commercial accommodation providers, that is, hotels. Short-term rentals have dramatically increased the available supply of rooms for visitors to multiple international destinations, potentially siphoning demand away from hotels to short-term rental businesses. In a competitive market, an increase in supply with constant demand would negatively influence incumbent service providers. In this article, we examine the substitution effects of short-term rental supply on hotel performance in different cities around the world. Specifically, we comprehensively investigate the substitution effects of short-term rental supply on hotel performance based on hotel class, location type, and region. Furthermore, we segment the short-term rental supply based on its types of accommodations, that is, shared rooms, private rooms, and entire homes, and both examine and quantify the differential effects of these types of short-term rentals on different types of hotels. This study offers a comprehensive analysis regarding the impact of multiple short-term rental platforms on hotel performance and offers both conceptual and practical insights regarding the nature and extent of the effects that were identified.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3400
Author(s):  
Jie Xing ◽  
Peng Wu

Bidirectional coupling systems for electricity and natural gas composed of gas units and power-to-gas (P2G) facilities improve the interactions between different energy systems. In this paper, a combined optimization planning method for an electricity-natural gas coupling system with P2G was studied. Firstly, the characteristics of the component model of the electricity-natural gas coupling system were analyzed. The optimization planning model for the electricity-natural gas coupling system was established with the goal of minimizing the sum of the annual investment costs and the annual operation costs. Based on the established model, the construction statuses for different types of units, power lines, and pipelines and the output distribution values for gas units and P2G stations were optimized. Then, the immune algorithm was proposed to solve the optimization planning model. Finally, an electricity-natural gas coupling system composed of a seven-node natural gas system and a nine-node power system was taken as an example to verify the rationality and effectiveness of the model under different scenarios.


2021 ◽  
pp. 026975802110106
Author(s):  
Raoul Notté ◽  
E.R. Leukfeldt ◽  
Marijke Malsch

This article explores the impact of online crime victimisation. A literature review and 41 interviews – 19 with victims and 22 with experts – were carried out to gain insight into this. The interviews show that most impacts of online offences correspond to the impacts of traditional offline offences. There are also differences with offline crime victimisation. Several forms of impact seem to be specific to victims of online crime: the substantial scale and visibility of victimhood, victimisation that does not stop in time, the interwovenness of online and offline, and victim blaming. Victims suffer from double, triple or even quadruple hits; it is the accumulation of different types of impact, enforced by the limitlessness in time and space, which makes online crime victimisation so extremely invasive. Furthermore, the characteristics of online crime victimisation greatly complicate the fight against and prevention of online crime. Finally, the high prevalence of cybercrime victimisation combined with the severe impact of these crimes seems contradictory with public opinion – and associated moral judgments – on victims. Further research into the dominant public discourse on victimisation and how this affects the functioning of the police and victim support would be valuable.


2021 ◽  
Vol 13 (14) ◽  
pp. 7637
Author(s):  
Taekyoung Lee ◽  
Jieun Cha ◽  
Sohyun Sung

Trees’ ability to capture atmospheric Particular Matter (PM) is related to morphological traits (shape, size, and micro-morphology) of the leaves. The objectives of this study were (1) to find out whether cluster pattern of the leaves is also a parameter that affects trees’ PM capturing performance and (2) to apply the cluster patterns of the leaves on architectural surfaces to confirm its impact on PM capturing performance. Two series of chamber experiments were designed to observe the impact of cluster patterns on PM capturing performance whilst other influential variables were controlled. First, we exposed synthetic leaf structures of different cluster patterns (a large and sparsely arranged cluster pattern and a small and densely arranged cluster pattern) to artificially generated PM in a chamber for 60 min and recorded the changing levels of PM2.5 and PM10 every minute. The results confirmed that the small and densely arranged cluster pattern has more significant effect on reducing PM2.5 and PM10 than the large and sparsely arranged cluster pattern. Secondly, we created three different types of architectural surfaces mimicking the cluster patterns of the leaves: a base surface, a folded surface, and a folded and porous surface. The surfaces were also exposed to artificially generated PM in the chamber and the levels of PM2.5 and PM10 were recorded. The results confirmed that the folded and porous surface has a more significant effect on reducing PM2.5 and PM10 than other surfaces. The study has confirmed that the PM capturing performance of architectural surfaces can be improved by mimicking cluster pattern of the leaves.


Sign in / Sign up

Export Citation Format

Share Document