Numerical Solution of Heat Transfer During Solidification of an Encapsulated Phase Change Material

Author(s):  
Antonio Ramos Archibold ◽  
Muhammad M. Rahman ◽  
D. Yogi Goswami ◽  
Elias L. Stefanakos

Macro encapsulation techniques have gained considerable attention in latent heat storage systems for solar energy applications in order to improve the overall energy conversion efficiency in solar thermal power plants. However the heat transfer mechanisms that govern the charging and discharging processes at high operating temperatures are still under development and represent an important aspect in the thermal energy storage design process. This study presents a numerical solution of the heat transfer and phase change that occurs during the solidification process of a phase change material (PCM) encapsulated in a spherical container. A transient two-dimensional axisymmetric mathematical model was solved using the control volume discretization approach along with the enthalpy-porosity method to track the melting front. A spherical shell of thickness t, under the gravitational field is completely filled with liquid PCM. For time t>0, a constant temperature boundary condition Tw, which is lower than the phase change temperature of the PCM, is imposed at the outer surface of the shell. A comprehensive analysis is presented in order to assess the role of the capsule size, buoyancy-driven flow in the liquid phase, and shell outer surface temperature on the thermal performance of the system. Results show that with the increase of Stefan number the solidification rate is enhanced. A reduction of 39.25% in total solidification time is predicted when the Stefan number changed from 0.095 to 0.143. Finally a generalized correlation for the solid mass fraction during solidification is obtained based on a combination of Fourier and Stefan numbers and a dimensionless material parameter.

2019 ◽  
Vol 30 (7) ◽  
pp. 3765-3789 ◽  
Author(s):  
Mohammad Ghalambaz ◽  
Kasra Ayoubi Ayoubloo ◽  
Ahmad Hajjar

Purpose This paper aims to investigate melting heat transfer of a non-Newtonian phase change material (PCM) in a cylindrical enclosure-space between two tubes using a deformed mesh method. Design/methodology/approach Metal foam porous layers support the inner and outer walls of the enclosure. The porous layers and clear space of the enclosure are filled with PCM. The natural convection effects during the phase change are taken into account, and the governing equations for the molten region and solid region of the enclosure are introduced. The governing equations are transformed into non-dimensional form and then solved using finite element method. The results are compared with the literary works and found in good agreement. The non-Newtonian effects on the phase change heat transfer and melting front are studied. Findings The results show that the increase of non-Newtonian effects (the decrease of the power-law index) enhances the heat melting process in the cavity at the moderate times of phase change heat transfer. The temperature gradients in porous metal foam over the hot wall are small, and hence, the porous layer notably increases the melting rate. When the melting front reaches the cold porous layer, strong non-linear behaviors of the melting front can be observed. Originality/value The phase change heat transfer of non-Newtonian fluid in a cylindrical enclosure partially filled with metal foams is addressed for the first time.


2019 ◽  
Vol 111 ◽  
pp. 01001
Author(s):  
Hansol Lim ◽  
Hye-Jin Cho ◽  
Seong-Yong Cheon ◽  
Soo-Jin Lee ◽  
Jae-Weon Jeong

A phase change material based radiant cooling panel with thermoelectric module (PCM-TERCP) is proposed in this study. It consists of two aluminium panels, and phase change materials (PCMs) sandwiched between the two panels. Thermoelectric modules (TEMs) are attached to one of the aluminium panels, and heat sinks are attached to the top side of TEMs. PCM-TERCP is a thermal energy storage concept equipment, in which TEMs freeze the PCM during the night whose melting temperature is 16○C. Therefore, the radiant cooling panel can maintain a surface temperature of 16◦C without the operation of TEM during the day. Furthermore, it is necessary to design the PCM-TERCP in a way that it can maintain the panel surface temperature during the targeted operating time. Therefore, the numerical model was developed using finite difference method to evaluate the thermal behaviour of PCM-TERCP. Experiments were also conducted to validate the performance of the developed model. Using the developed model, the possible operation time was investigated to determine the overall heat transfer coefficient required between radiant cooling panel and TEM. Consequently, the results showed that a overall heat transfer coefficient of 394 W/m2K is required to maintain the surface temperature between 16○C to 18○C for a 3 hours operation.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Guansheng Chen ◽  
Nanshuo Li ◽  
Huanhuan Xiang ◽  
Fan Li

It is well known that attaching fins on the tubes surfaces can enhance the heat transfer into and out from the phase change materials (PCMs). This paper presents the results of an experimental study on the thermal characteristics of finned coil latent heat storage unit (LHSU) using paraffin as the phase change material (PCM). The paraffin LHSU is a rectangular cube consists of continuous horizontal multibended tubes attached vertical fins at the pitches of 2.5, 5.0, and 7.5 mm that creates the heat transfer surface. The shell side along with the space around the tubes and fins is filled with the material RT54 allocated to store energy of water, which flows inside the tubes as heat transfer fluid (HTF). The measurement is carried out under four different water flow rates: 1.01, 1.30, 1.50, and 1.70 L/min in the charging and discharging process, respectively. The temperature of paraffin and water, charging and discharging wattage, and heat transfer coefficient are plotted in relation to the working time and water flow rate.


2021 ◽  
Vol 13 (5) ◽  
pp. 2590
Author(s):  
S. A. M. Mehryan ◽  
Kaamran Raahemifar ◽  
Leila Sasani Gargari ◽  
Ahmad Hajjar ◽  
Mohamad El Kadri ◽  
...  

A Nano-Encapsulated Phase-Change Material (NEPCM) suspension is made of nanoparticles containing a Phase Change Material in their core and dispersed in a fluid. These particles can contribute to thermal energy storage and heat transfer by their latent heat of phase change as moving with the host fluid. Thus, such novel nanoliquids are promising for applications in waste heat recovery and thermal energy storage systems. In the present research, the mixed convection of NEPCM suspensions was addressed in a wavy wall cavity containing a rotating solid cylinder. As the nanoparticles move with the liquid, they undergo a phase change and transfer the latent heat. The phase change of nanoparticles was considered as temperature-dependent heat capacity. The governing equations of mass, momentum, and energy conservation were presented as partial differential equations. Then, the governing equations were converted to a non-dimensional form to generalize the solution, and solved by the finite element method. The influence of control parameters such as volume concentration of nanoparticles, fusion temperature of nanoparticles, Stefan number, wall undulations number, and as well as the cylinder size, angular rotation, and thermal conductivities was addressed on the heat transfer in the enclosure. The wall undulation number induces a remarkable change in the Nusselt number. There are optimum fusion temperatures for nanoparticles, which could maximize the heat transfer rate. The increase of the latent heat of nanoparticles (a decline of Stefan number) boosts the heat transfer advantage of employing the phase change particles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1425
Author(s):  
Tarek Bouzennada ◽  
Farid Mechighel ◽  
Kaouther Ghachem ◽  
Lioua Kolsi

A 2D-symmetric numerical study of a new design of Nano-Enhanced Phase change material (NEPCM)-filled enclosure is presented in this paper. The enclosure is equipped with an inner tube allowing the circulation of the heat transfer fluid (HTF); n-Octadecane is chosen as phase change material (PCM). Comsol-Multiphysics commercial code was used to solve the governing equations. This study has been performed to examine the heat distribution and melting rate under the influence of the inner-tube position and the concentration of the nanoparticles dispersed in the PCM. The inner tube was located at three different vertical positions and the nanoparticle concentration was varied from 0 to 0.06. The results revealed that both heat transfer/melting rates are improved when the inner tube is located at the bottom region of the enclosure and by increasing the concentration of the nanoparticles. The addition of the nanoparticles enhances the heat transfer due to the considerable increase in conductivity. On the other hand, by placing the tube in the bottom area of the enclosure, the liquid PCM gets a wider space, allowing the intensification of the natural convection.


2013 ◽  
Vol 59 (4) ◽  
pp. 483-497 ◽  
Author(s):  
D. Prakash ◽  
P. Ravikumar

Abstract In this paper, transient analysis on heat transfer across the residential building roof having various materials like wood wool, phase change material and weathering tile is performed by numerical simulation technique. 2-dimensional roof model is created, checked for grid independency and validated with the experimental results. Three different roof structures are included in this study namely roof with (i). Concrete and weathering tile, (ii). Concrete, phase change material and weathering tile and (iii). Concrete, phase change material, wood wool and weathering tile. Roof type 3 restricts 13% of heat entering the room in comparison with roof having only concrete and weathering tile. Also the effect of various roof layers’ thickness in the roof type 3 is investigated and identified that the wood wool plays the major role in arresting the entry of heat in to the room. The average reduction of heat is about 10 % for an increase of a unit thickness of wood wool layer.


Sign in / Sign up

Export Citation Format

Share Document