Simultaneous Time-Frequency Control of Active Magnetic Bearing

Author(s):  
Meng-Kun Liu ◽  
C. Steve Suh

Active magnetic bearings enable greater spindle dynamic stiffness through higher attainable bearing surface speeds. However, the active magnetic bearing system is highly nonlinear due to the interaction between electromagnetic field and rotor dynamics. Its nonlinear character becomes prominent when rotating in high speed. The operation undergoes route-to-chaos and is vulnerable to external excitation, which eventually leads to detrimental failure. A novel simultaneous time-frequency control theory is developed for controlling the active magnetic bearing at high speed. The control theory is able to tolerate the uncertainties in the system due to on-line identification and the deterioration in both time and frequency domain can be restrained.

1992 ◽  
Vol 114 (4) ◽  
pp. 623-633 ◽  
Author(s):  
K. Youcef-Toumi ◽  
S. Reddy

The successful operation of actively controlled magnetic bearings depends greatly on the electromechanical design and control system design. The function of the controller is to maintain bearing performance in the face of system dynamic variations and unpredictable disturbances. The plant considered here is the rotor and magnetic bearing assembly of a test apparatus. The plant dynamics consisting of actuator dynamics, rigid rotor dynamics and flexibility effects are described. Various components of the system are identified and their corresponding linearized theoretical models are validated experimentally. Tests are also run to identify the coupling effects and flexibility modes. The highly nonlinear behavior of the magnetic bearings in addition to the inherent instability of such a system makes the controller design complex. A digital Time Delay Controller is designed and its effectiveness evaluated using several simulations based on linear and nonlinear models for the bearing including bending mode effects. This controller is implemented as an alternative to an existing linear analog compensator. Several experiments are conducted with each controller for spinning and nonspinning conditions. These include time responses, closed loop frequency responses and disturbance rejection responses. The experimental results and comparisons between those of a digital Time Delay Controller and an analog compensator indicate that the Time Delay Controller has impressive static and dynamic stiffness characteristics for the prototype considered. The Time Delay Controller also maintains almost the same dynamic behavior over a significantly wide range of rotor speeds.


2015 ◽  
Vol 9 (1) ◽  
pp. 496-503
Author(s):  
Zhu Yili ◽  
Zhang Yongchun

In an active magnetic bearing (AMB) system, the rotor always rotates at extremely high speed which always accompany with huge vibrations and noises. Most of the former researches associated with reducing the rotor vibrations are mainly focused on the control methods of AMB. A new method of installing series of assault blocks in the rotor is proposed to reduce the rotor vibrations. Firstly, the dynamic models of rotor supported by AMB considering the influences of assault blocks are established. Then, both dynamic simulations with and without assault blocks are carried out separately using the real-time AMB support dynamic stiffness. The rotor vibration displacements are mainly analyzed. Finally, relevant experiments are made to verify the theoretical results. Both theoretical and experimental results validated the advantages of using assault blocks.


Author(s):  
Chi-Wei Kuo ◽  
C. Steve Suh

A novel time-frequency nonlinear scheme demonstrated to be feasible for the control of dynamic instability including bifurcation, non-autonomous time-delay feedback oscillators, and route-to-chaos in many nonlinear systems is applied to the control of a time-delayed system. The control scheme features wavelet adaptive filters for simultaneous time-frequency resolution. Specifically Discrete Wavelet transform (DWT) is used to address the nonstationary nature of a chaotic system. The concept of active noise control is also adopted. The scheme applied the filter-x least mean square (FXLMS) algorithm which promotes convergence speed and increases performance. In the time-frequency control scheme, the FXLMS algorithm is modified by adding an adaptive filter to identify the system in real-time in order to construct a wavelet-based time-frequency controller capable of parallel on-line modeling. The scheme of such a construct, which possesses joint time-frequency resolution and embodies on-line FXLMS, is able to control non-autonomous, nonstationary system responses. Although the controller design is shown to successfully moderate the dynamic instability of the time-delay feedback oscillator and unconditionally warrant a limit cycle, parameters are required to be optimized. In this paper, the setting of the control parameters such as control time step, sampling rate, wavelet filter vector, and step size are studied and optimized to control a time-delay feedback oscillators of a nonautonomous type. The time-delayed oscillators have been applied in a broad set of fields including sensor design, manufacturing, and machine dynamics, but they can be easily perturbed to exhibit complex dynamical responses even with a small perturbation from the time-delay feedback. These responses for the system have a very negative impact on the stability, and thus output quality. Through employingfrequency-time control technique, the time responses of the time-delay feedback system to external disturbances are properly mitigated and the frequency responses are also suppressed, thus rendering the controlled responses quasi-periodic.


2006 ◽  
Vol 129 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Naohiko Takahashi ◽  
Hiroyuki Fujiwara ◽  
Osami Matsushita ◽  
Makoto Ito ◽  
Yasuo Fukushima

In active magnetic bearing (AMB) systems, stability is the most important factor for reliable operation. Rotor positions in radial direction are regulated by four-axis control in AMB, i.e., a radial system is to be treated as a multi-input multioutput (MIMO) system. One of the general indices representing the stability of a MIMO system is “maximum singular value” of a sensitivity function matrix, which needs full matrix elements for calculation. On the other hand, ISO 14839-3 employs “maximum gain” of the diagonal elements. In this concept, each control axis is considered as an independent single-input single-output (SISO) system and thus the stability indices can be determined with just four sensitivity functions. This paper discusses the stability indices using sensitivity functions as SISO systems with parallel/conical mode treatment and/or side-by-side treatment, and as a MIMO system with using maximum singular value; the paper also highlights the differences among these approaches. In addition, a conversion from usual x∕y axis form to forward/backward form is proposed, and the stability is evaluated in its converted form. For experimental demonstration, a test rig diverted from a high-speed compressor was used. The transfer functions were measured by exciting the control circuits with swept signals at rotor standstill and at its 30,000 revolutions/min rotational speed. For stability limit evaluation, the control loop gains were increased in one case, and in another case phase lags were inserted in the controller to lead the system close to unstable intentionally. In this experiment, the side-by-side assessment, which conforms to the ISO standard, indicates the least sensitive results, but the difference from the other assessments are not so great as to lead to inadequate evaluations. Converting the transfer functions to the forward/backward form decouples the mixed peaks due to gyroscopic effect in bode plot at rotation and gives much closer assessment to maximum singular value assessment. If large phase lags are inserted into the controller, the second bending mode is destabilized, but the sensitivity functions do not catch this instability. The ISO standard can be used practically in determining the stability of the AMB system, nevertheless it must be borne in mind that the sensitivity functions do not always highlight the instability in bending modes.


Author(s):  
Meng-Kun Liu ◽  
Eric B. Halfmann ◽  
C. Steve Suh

A novel control concept is presented for the online control of a high-speed micro-milling model system in the time and frequency domains concurrently. Micro-milling response at high-speed is highly sensitive to machining condition and external perturbation, easily deteriorating from bifurcation to chaos. When losing stability, milling time response is no longer periodic and the frequency response becomes broadband, rendering aberrational tool chatter and probable tool damage. The controller effectively mitigates the nonlinear vibration of the tool in the time domain and at the same time confines the frequency response from expanding and becoming chaotically broadband. The simultaneous time-frequency control is achieved through manipulating wavelet coefficients, thus not limited by the increasing bandwidth of the chaotic system — a fundamental restraint that deprives contemporary controller designs of validity and effectiveness. The feedforward feature of the control concept prevents errors from re-entering the control loop and inadvertently perturbing the sensitive micro-milling system. Because neither closed-form nor linearization is required, the innate, genuine features of the micro-milling response are faithfully retained.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Seng-Chi Chen ◽  
Van-Sum Nguyen ◽  
Dinh-Kha Le ◽  
Nguyen Thi Hoai Nam

Studies on active magnetic bearing (AMB) systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC). The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC), the parameters of which are adjusted using a radial basis function neural network (RBFNN), is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.


Author(s):  
Kamal Kumar Basumatary ◽  
Karuna Kalita ◽  
Sashindra K. Kakoty ◽  
Seamus D. Garvey

Abstract The hybrid Gas Foil Bearings combining the Gas Foil Bearing and Active Magnetic Bearing is a possibility for application in high-speed turbomachinery and a few developments have been made in this context. As such, the cost of conventional Gas Foil Bearing increases due to its requirement of precise manufacturing method and the coating material for the top foil and bump foil. In case of Active Magnetic Bearing, the normal electrical arrangement includes a multiplicity of independently controlled current sources usually at least four drives per bearing which increases its cost. Therefore, the hybrid Gas Foil Bearing will have much higher cost. In this work, a new electrical arrangement for the electromagnetic actuators of the hybrid Gas Foil Bearing has been proposed. The new arrangement requires only two drives per bearing and the bias current has been provided (in the same set of windings) through a simple rectifier with small series choke and shunt capacitor. As the number of drives required is less, the proposed bearing will have low cost. Implementing the new approach, the force vectors are achieved using only two current-source drives whereas the usual conventional arrangement requires four such drives. Numerical simulations are performed to explore the capabilities of the low cost bearing.


Author(s):  
Jerzy T. Sawicki ◽  
Dmitry L. Storozhev ◽  
John D. Lekki

This paper addresses self-diagnostic properties of AMB (active magnetic bearing) supported rotors for on-line detection of the transverse crack on a rotating shaft. In addition to pure levitation, the rotor supporting bearing also serves as an actuator that transforms current signals additionally injected into the control loop into the superimposed specially selected excitation forces into the suspended rotor. These additional excitations induce combination frequencies in the rotor response, providing unique signatures for the presence of crack. The background of theoretical modeling, experimental and computer simulation results for the AMB supported cracked rotor with self-diagnostic excitation forces are presented and discussed.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Yulan Zhao ◽  
Guojun Yang ◽  
Patrick Keogh ◽  
Lei Zhao

Active magnetic bearings (AMBs) have been utilized widely to support high-speed rotors. However, in the case of AMB failure, emergencies, or overload conditions, the auxiliary bearing is chosen as the backup protector to provide mechanical supports and displacement constraints for the rotor. With lack of support, the auxiliary bearing will catch the dropping rotor. Accordingly, high contact forces and corresponding thermal generation due to mechanical rub are applied on the dynamic contact area. Rapid deterioration may be brought about by excessive dynamic and thermal shocks. Therefore, the auxiliary bearing must be sufficiently robust to guarantee the safety of the AMB system. Many approaches have been put forward in the literature to estimate the rotor dynamic motion, nonetheless most of them focus on the horizontal rotor drop and few consider the inclination around the horizontal plane for the vertical rotor. The main purpose of this paper is to predict the rotor dynamic behavior accurately for the vertical rotor drop case. A detailed model for the vertical rotor drop process with consideration of the rotating inclination around x- and y-axes is proposed in this paper. Additionally, rolling and sliding friction are distinguished in the simulation scenario. This model has been applied to estimate the rotor drop process in a helium circulator system equipped with AMBs for the 10 MW high-temperature gas-cooled reactor (HTR-10). The HTR-10 has been designed and researched by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University. The auxiliary bearing is utilized to support the rotor in the helium circulator. The validity of this model is verified by the results obtained in this paper as well. This paper also provides suggestions for the further improvement of auxiliary bearing design and engineering application.


Sign in / Sign up

Export Citation Format

Share Document