MoVE: A Mobility Virtual Environment for Autonomous Vehicle Testing

Author(s):  
Marc Compere ◽  
Garrett Holden ◽  
Otto Legon ◽  
Roberto Martinez Cruz

Abstract Autonomous vehicle researchers need a common framework in which to test autonomous vehicles and algorithms along a realism spectrum from simulation-only to real vehicles and real people. The community needs an open-source, publicly available framework, with source code, in which to develop, simulate, execute, and post-process multi-vehicle tests. This paper presents a Mobility Virtual Environment (MoVE) for testing autonomous system algorithms, vehicles, and their interactions with real and simulated vehicles and pedestrians. The result is a network-centric framework designed to represent multiple real and multiple virtual vehicles interacting and possibly communicating with each other in a common coordinate frame with a common timestamp. This paper presents a literature review of comparable autonomous vehicle softwares, presents MoVE concepts and architecture, and presents three experimental tests with multiple virtual and real vehicles, with real pedestrians. The first scenario is a traffic wave simulation using a real lead vehicle and 3 real follower vehicles. The second scenario is a medical evacuation scenario with 2 real pedestrians and 1 real vehicles. Real pedestrians are represented using live-GPS-followers streaming GPS position from mobile phones over the cellular network. Time-history and spatial plots of real and virtual vehicles are presented with vehicle-to-vehicle distance calculations indicating where and when potential collisions were detected and avoided. The third scenario highlights the avoid() behavior successfully avoiding other virtual vehicles and 1 real pedestrian in a small outdoor area. The MoVE set of concepts and interfaces are implemented as open-source software available for use and customization within the autonomous vehicle community. MoVE is freely available under the GPLv3 open-source license at gitlab.com/comperem/move.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3850
Author(s):  
Bastien Vincke ◽  
Sergio Rodriguez Rodriguez Florez ◽  
Pascal Aubert

Emerging technologies in the context of Autonomous Vehicles (AV) have drastically evolved the industry’s qualification requirements. AVs incorporate complex perception and control systems. Teaching the associated skills that are necessary for the analysis of such systems becomes a very difficult process and existing solutions do not facilitate learning. In this study, our efforts are devoted to proposingan open-source scale model vehicle platform that is designed for teaching the fundamental concepts of autonomous vehicles technologies that are adapted to undergraduate and technical students. The proposed platform is as realistic as possible in order to present and address all of the fundamental concepts that are associated with AV. It includes all on-board components of a stand-alone system, including low and high level functions. Such functionalities are detailed and a proof of concept prototype is presented. A set of experiments is carried out, and the results obtained using this prototype validate the usability of the model for the analysis of time- and energy-constrained systems, as well as distributed embedded perception systems.


Author(s):  
Mohsen Malayjerdi ◽  
Vladimir Kuts ◽  
Raivo Sell ◽  
Tauno Otto ◽  
Barış Cem Baykara

Abstract One of the primary verification criteria of the autonomous vehicle is safe interaction with other road users. Based on studies, real-road testing is not practical for safety validation due to its time and cost consuming. Therefore, simulating miles driven is the only feasible way to overcome this limitation. The primary goal of the related research project is to develop advanced techniques in the human-robot interaction (HRI) safety validation area by usage of immersive simulation technologies. Developing methods for the creation of the simulation environment will enable us to do experiments in a digital environment rather than real. The main aim of the paper is to develop an effective method of creating a virtual environment for performing simulations on industrial robots, mobile robots, and autonomous vehicles (AGV-s) from the safety perspective for humans. A mid-size drone was used for aerial imagery as the first step in creating a virtual environment. Then all the photos were processed in several steps to build the final 3D map. Next, this mapping method was used to create a high detail simulation environment for testing an autonomous shuttle. Developing efficient methods for mapping real environments and simulating their variables is crucial for the testing and development of control algorithms of autonomous vehicles.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1427
Author(s):  
María Garrosa ◽  
Ester Olmeda ◽  
Sergio Fuentes del Toro ◽  
Vicente Díaz

Nowadays, autonomous vehicles are increasing, and the driving scenario that includes both autonomous and human-driven vehicles is a fact. Knowing the driving styles of drivers in the process of automating vehicles is interest in order to make driving as natural as possible. To this end, this article presents a first approach to the design of a controller for the braking system capable of imitating the different manoeuvres that any driver performs while driving. With this aim, different experimental tests have been carried out with a vehicle instrumented with sensors capable of providing real-time information related to the braking system. The experimental tests consist of reproducing a series of braking manoeuvres at different speeds on a flat floor track following a straight path. The tests distinguish between three types of braking manoeuvre: maintained, progressive and emergency braking, which cover all the driving circumstances in which the braking system may intervene. This article presents an innovative approach to characterise braking types thanks to the methodology of analysing the data obtained by sensors during experimental tests. The characterisation of braking types makes it possible to dynamically classify three driving styles: cautious, normal and aggressive. The proposed classifications allow it possible to identify the driving styles on the basis of the pressure in the hydraulic brake circuit, the force exerted by the driver on the brake pedal, the longitudinal deceleration and the braking power, knowing in all cases the speed of the vehicle. The experiments are limited by the fact that there are no other vehicles, obstacles, etc. in the vehicle’s environment, but in this article the focus is exclusively on characterising a driver with methods that use the vehicle’s dynamic responses measured by on-board sensors. The results of this study can be used to define the driving style of an autonomous vehicle.


Author(s):  
Dwarkesh Iyengar ◽  
Diane L. Peters

Autonomous vehicles are a subject of intense research interest, and are being approached by many researchers in different ways. Some of these approaches are based upon pure simulation, while others involve investigations using hardware. One possible approach, which can be useful when investigating how autonomous vehicles might interact, involves the use of physical scaled model vehicles, and the development of an appropriate vehicle is the focus of this paper. For this purpose, a commercially available 1:18 radio controlled car is remodeled and modified. An onboard microcontroller unit (MCU) is used for sensor data acquisition and preliminary signal conditioning as well as actuator control. The sensor array includes a gyroscope/accelerometer, a compass and speed encoder to find the angular and linear position of the car in a local coordinate frame as well as a range finder to detect impending obstacles in the vehicle’s planned path. This information is sent over a serial communication protocol to a Master station via a 2.4 GHz wireless module. The master station consists of a National Instruments (NI) myRIO real-time FPGA module where the local coordinates are used to formulate the position of the car in global coordinates and a user defined control scheme is implemented and the appropriate actuator signal is sent back wirelessly to the MCU on the car. The main purpose of using an independent and offsite control station is to isolate the main processing and increase response speed to changing environmental factors. Furthermore, the myRIO contains the dynamic model of the car which can be modified by linking it to a personal computer station running the LabVIEW graphic user interface (GUI). This adds greater flexibility to the overall system, thus allowing the user to focus on the different control schemes to be implemented through the hardware setup. This setup will be replicated for more cars, set in an urban traffic environment, and the interactions between the cars can then be studied and optimized.


Author(s):  
Mhafuzul Islam ◽  
Mashrur Chowdhury ◽  
Hongda Li ◽  
Hongxin Hu

Vision-based navigation of autonomous vehicles primarily depends on the deep neural network (DNN) based systems in which the controller obtains input from sensors/detectors, such as cameras, and produces a vehicle control output, such as a steering wheel angle to navigate the vehicle safely in a roadway traffic environment. Typically, these DNN-based systems in the autonomous vehicle are trained through supervised learning; however, recent studies show that a trained DNN-based system can be compromised by perturbation or adverse inputs. Similarly, this perturbation can be introduced into the DNN-based systems of autonomous vehicles by unexpected roadway hazards, such as debris or roadblocks. In this study, we first introduce a hazardous roadway environment that can compromise the DNN-based navigational system of an autonomous vehicle, and produce an incorrect steering wheel angle, which could cause crashes resulting in fatality or injury. Then, we develop a DNN-based autonomous vehicle driving system using object detection and semantic segmentation to mitigate the adverse effect of this type of hazard, which helps the autonomous vehicle to navigate safely around such hazards. We find that our developed DNN-based autonomous vehicle driving system, including hazardous object detection and semantic segmentation, improves the navigational ability of an autonomous vehicle to avoid a potential hazard by 21% compared with the traditional DNN-based autonomous vehicle driving system.


Author(s):  
Xing Xu ◽  
Minglei Li ◽  
Feng Wang ◽  
Ju Xie ◽  
Xiaohan Wu ◽  
...  

A human-like trajectory could give a safe and comfortable feeling for the occupants in an autonomous vehicle especially in corners. The research of this paper focuses on planning a human-like trajectory along a section road on a test track using optimal control method that could reflect natural driving behaviour considering the sense of natural and comfortable for the passengers, which could improve the acceptability of driverless vehicles in the future. A mass point vehicle dynamic model is modelled in the curvilinear coordinate system, then an optimal trajectory is generated by using an optimal control method. The optimal control problem is formulated and then solved by using the Matlab tool GPOPS-II. Trials are carried out on a test track, and the tested data are collected and processed, then the trajectory data in different corners are obtained. Different TLCs calculations are derived and applied to different track sections. After that, the human driver’s trajectories and the optimal line are compared to see the correlation using TLC methods. The results show that the optimal trajectory shows a similar trend with human’s trajectories to some extent when driving through a corner although it is not so perfectly aligned with the tested trajectories, which could conform with people’s driving intuition and improve the occupants’ comfort when driving in a corner. This could improve the acceptability of AVs in the automotive market in the future. The driver tends to move to the outside of the lane gradually after passing the apex when driving in corners on the road with hard-lines on both sides.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2244
Author(s):  
S. M. Yang ◽  
Y. A. Lin

Safe path planning for obstacle avoidance in autonomous vehicles has been developed. Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating path pruning, smoothing, and optimization with geometric collision detection is shown to improve planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the redundant points generated by the random trees for a new path, without colliding with the obstacles. Path smoothing is performed to modify the path so that it becomes continuously differentiable with curvature implementable by the vehicle. Optimization is performed to select a “near”-optimal path of the shortest distance among the feasible paths for motion efficiency. In the experimental verification, both a pure pursuit steering controller and a proportional–integral speed controller are applied to keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It is shown that the vehicle can successfully track the path efficiently and reach the destination safely, with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also applied to lane changes, and the average deviation from the lane during and after lane changes remains within 8.3% of the vehicle width.


2020 ◽  
Vol 10 (1) ◽  
pp. 175-182 ◽  
Author(s):  
Grzegorz Koralewski

AbstractThe work presents a simulation model of a “driver–automation–autonomous vehicles–road” system which is the basis for synthesis of automatic gear shift control system. The mathematical description makes use of physical quantities which characterise driving torque transformation from the combustion engine to the car driven wheels. The basic components of the model are algorithms for the driver’s action logic in controlling motion velocity, logic of gear shift control functioning regarding direction and moment of switching, for determining right-hand side of differential equations and for motion quality indicators. The model is realised in a form of an application software package, comprising sub-programmes for input data, for computerised motion simulation of cars with mechanical and hydro-mechanical – automatically controlled – transmission systems and for models of characteristic car routes.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3425
Author(s):  
Huanping Li ◽  
Jian Wang ◽  
Guopeng Bai ◽  
Xiaowei Hu

In order to explore the changes that autonomous vehicles would bring to the current traffic system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles. Using calculus and difference methods, a speed transformation model is established which could make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic; the participation of autonomous vehicles won’t bring essential changes to road traffic parameters; the speed-following transformation model minimizes the safety distance and provides a reference for the bottom program design of autonomous vehicles. In general, the research could not only optimize the stability of transportation system operation but also save road resources.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 297
Author(s):  
Ali Marzoughi ◽  
Andrey V. Savkin

We study problems of intercepting single and multiple invasive intruders on a boundary of a planar region by employing a team of autonomous unmanned surface vehicles. First, the problem of intercepting a single intruder has been studied and then the proposed strategy has been applied to intercepting multiple intruders on the region boundary. Based on the proposed decentralised motion control algorithm and decision making strategy, each autonomous vehicle intercepts any intruder, which tends to leave the region by detecting the most vulnerable point of the boundary. An efficient and simple mathematical rules based control algorithm for navigating the autonomous vehicles on the boundary of the see region is developed. The proposed algorithm is computationally simple and easily implementable in real life intruder interception applications. In this paper, we obtain necessary and sufficient conditions for the existence of a real-time solution to the considered problem of intruder interception. The effectiveness of the proposed method is confirmed by computer simulations with both single and multiple intruders.


Sign in / Sign up

Export Citation Format

Share Document