Investigation on Mechanical Properties and Corrosion Resistance of Cobalt-Based Alloy Cladding Layer

Author(s):  
Zhiyi Jin ◽  
Zhenqiang Yao ◽  
Hong Shen

Abstract Austenitic stainless steel was cladded with Cobalt-based alloy by means of Tungsten inert gas (TIG) welding to improve the performance of the working parts such as the thrust bearing plates under dynamic loads and corrosive liquid. Specimens were prepared with different welding parameters, namely the cladding current, preheating temperature, inter-layer temperature and post heat treatment temperature, so as to investigate their influence on micro-hardness, as well as tensile and bending strength. It is revealed that the lower welding current coincides with higher micro-hardness as well as tensile and bending strength. The higher inter-layer temperature will result inhigher overlay micro-hardness. The post weld heat treatment temperature influences the bending strength of the overlay weld specimens. In addition, the accumulation of Cr and Ni compounds on weldment surface is found to coincide with higher corrosion resistance in over-layers by means of XRD.

2010 ◽  
Vol 105-106 ◽  
pp. 123-125 ◽  
Author(s):  
Yong Li ◽  
Qi Hong Wei ◽  
Ling Li ◽  
Chong Hai Wang ◽  
Xiao Li Zhang ◽  
...  

In this paper, negative thermal expansion coefficient eucryptite powders were prepared by sol-gel method using silica-sol as starting material. The raw blocks were obtained by dry pressing process after the powder was synthesized, and then the raw blocks were heat-treated at 600º, 1150º, 1280º, 1380º, 1420º and 1450°C, respectively. Variations of density, porosity and thermal expansion coefficient at different heat treatment temperatures were investigated. Phase transformation and fracture surface morphology of eucryptite heat-treated at different temperatures, respectively, were observed by XRD and SEM. The results indicate that, with the increasing heat- treatment temperature, the grain size and the bending strength increased, porosity decreased, thermal expansion coefficient decreased continuously. Negative thermal expansion coefficient of -5.3162×10-6~-7.4413×10-6 (0~800°C) was obtained. But when the heat-treatment temperature was more than 1420°C, porosity began to increase, bending strength began to decrease, which were the symbols of over-burning, while the main crystal phase didn’t change.


2015 ◽  
Vol 817 ◽  
pp. 479-483
Author(s):  
Pan Li ◽  
Wan Chang Sun ◽  
Jun Gao ◽  
Quan Zhou ◽  
Pei Zhang

Ni-P alloy and SiC micron particles were codeposited on Q235 steel by electroless plating. The composition, microstructure, micro-hardness, corrosion resistance and oxidation resistance of the composite coating were studied. The results revealed that the deposited composite coating shows dispersed SiC particles and continuous Ni-P matrix. When the content of SiC was 8g/L and the heat treatment temperature was 300°C, the corrosion potential and corrosion current of Ni-P-SiC coating were-0.292V, and 8.2×10-7 A/cm2, respectively, while those of Ni-P composite coating were-0.501V, and 4.2×10-5 A/cm2, respectively. Ni-P-SiC composite coating with high content of SiC exhibits better oxidation resistance than Ni-P coating.


2011 ◽  
Vol 467-469 ◽  
pp. 365-368
Author(s):  
Yun Ying Fan ◽  
Ye Hua Jiang ◽  
Rong Zhou

Fe-based amorphous coatings have many excellent performances, such as good corrosion resistance, high hardness, satisfactory magnetism, etc. In this paper, Fe-P amorphous coatings were prepared by electrodeposition method, and the phase transformation, microstructure, and hardness of the coatings heated at different heat-treatment temperature were investigated. The results show that Fe-P amorphous coatings begin to crystallize when heated at 300°C, the α-Fe(P) solid solution appears when heated at 330°C, and FexP(X=1,2,3) compounds separate out from the solid solution when heat-treatment temperature is up to 370°C. During the process of heat-treatment, hardness of the Fe-P coating increases as the reinforcement result of solid solution and dispersed phase in the coatings, and the hardness reaches the maximum 1100 HV at 370°C. When heat-treatment temperature is higher than 460°C, dispersed phase in the coatings will grow up, which is called Ostwald Coarsening Phenomenon, and hardness of the coating decreases quickly.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 858
Author(s):  
Shenglin Liu ◽  
Yongsheng Zhu ◽  
Xinyue Lai ◽  
Xueping Zheng ◽  
Runnan Jia ◽  
...  

Fe-based amorphous/nanocrystalline coatings with smooth, compact interior structure and low porosity were fabricated via supersonic plasma spraying (SPS). The coatings showed outstanding corrosion resistance in a 3.5% NaCl solution at room temperature. In order to analyze the effect of annealing treatment on the microstructure, corrosion resistance and microhardness, the as-sprayed coating was annealed for 1 h under different temperatures such as 350, 450, 550 and 650 °C, respectively. The results showed that the number of oxides and cracks in the coatings presented an obvious increase with increasing annealing temperature, and the corrosion resistance of the coatings showed an obvious reduction. However, the microhardness of coatings showed an important increase. The microhardness of the coating could reach 1018 HV when the heat treatment temperature reached 650 °C. The X-ray diffraction (XRD) results showed that there appeared a number of crystalline phases in the coating when the heat treatment temperature was at 650 °C. The crystalline phases led to the increase of the microhardness.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Xiaomeng Hao ◽  
Qiuyi Wang ◽  
Yihua Wang ◽  
Xin Han ◽  
Chenglong Yuan ◽  
...  

AbstractBamboo is now widely used in construction, papermaking, textile, furniture and other fields because of its renewable, fast-growing, high-strength, high-yield and easy processing. However, compared with wood, bamboo and bamboo products are more vulnerable to damage by fungi and pests. An effective and eco-friendly method is urgently needed to improve their physical and chemical properties, decay resistance and anti-mildew properties, and hydrophobic properties. Here, bamboo was heated with methyl silicone oil. The effect of different temperatures (140 °C–200 °C) and different times (2 h–6 h) on the properties of bamboo was studied systematically, including chemical composition, physical and mechanical properties, surface wettability, decay resistance and anti-mildew property. No starch granules were observed inside the parenchymal cell lumen of bamboo specimen heat treated at 200 °C for 6 h. And with the increase of heat treatment temperature and time, the content of cellulose and hemicellulose decreases gradually while relative content of lignin increases due to its better thermal stability. Accordingly, the surface wettability decreases due to the changes of the surface functional groups and micro-morphologies. Under the condition of oil heat treatment at 160 °C for 2 h, the compressive strength parallel to grain of bamboo samples reach the maximum of 109.52 MPa. With further increase of heating temperature, the corresponding compressive strength decreases. The resulted bending strength and MOE both display similar changing trend. However, the optimal parameter is at 180 °C for 2 h, with the highest bending strength and MOE values of 142.42 MPa and 12,373.00 MPa, respectively. Finally, the decay resistance and anti-mildew property are dramatically enhanced with increased heat treatment temperature and time. All the corresponding changing mechanisms are investigated in depth and in detail. Our results provide comprehensive process parameters and micro-mechanism for the performance of oil heat treatment of bamboo, which can be used to guide the actual production.


2022 ◽  
Vol 60 (1) ◽  
pp. 26-34
Author(s):  
Chan Yang Kim ◽  
Do hyung Kim ◽  
Won sub Chung

This study was conducted to evaluate the corrosion resistance and optimize the heat-treatment process of AISI 439 ferrite stainless steel silicon and tin alloys with reduced chromium. The microstructure of the specimens and deposition under each condition were analyzed. The production of oxide films was compared based on the thickness of the film and the change in the contents of each element. In addition, electrochemical analyses of each heat-treatment condition was used to quantitatively compare corrosion resistance and passive film stability based on the relative chromium, silicon, and tin contents. It was found that the addition of silicon and tin compensated for the decrease in corrosion resistance induced by the chromium reduction. The addition of the two elements inhibited iron (Fe) oxide production in the surface oxide film, thereby improving the corrosion resistance of the material and improving the stability of the passive film. Moreover, the SiO2 and SnO2 layers inhibited the production of Fe oxide and contributed to the stability of the film along with Cr2O3, the main component of the passive film. However, when the heat treatment temperature increased above a specific temperature, the oxide inhibitory effect of the two elements was relatively offset. Nevertheless, further research to optimize the content of the three elements will help develop materials with superior mechanical properties and corrosion resistance.


2018 ◽  
Vol 65 (5) ◽  
pp. 492-498 ◽  
Author(s):  
Byung-Hyun Shin ◽  
Junghyun Park ◽  
Jongbae Jeon ◽  
Sung-bo Heo ◽  
Wonsub Chung

Purpose In this study, super duplex stainless steel (SDSS) was heat-treated. The purpose of this study is to assess the effect of the cooling rate after heat treatment on the pitting corrosion of SDSS. Design/methodology/approach The heat treatment from 1,000°C to 1,300°C was applied to SDSS to check the effect of the cooling rate. Findings The heat treatment temperature produced a different SDSS microstructure, and the cooling rate led to the growth of austenite. The casted SDSS indicated the presence of heterogeneous austenite, and the precipitation secondary phase under 1.6 per cent precipitated to bare metal. By applying heat treatment and cooling SDSS, its corrosion resistance changes because of the change in the chemical composition. The cooling rate at 5,600 J/s has the highest critical pitting temperature (CPT) at 1,100°C, and the cooling rate at 1.6 J/s has the highest CPT at 1,200°C. Low cooling rate (0.4 J/s) made the secondary phase at all temperature range. Research limitations/implications The effect of secondary phase not consider because that is well known to decreasing corrosion resistance. Practical implications Solution annealing is taken into account to optimize the corrosion resistance. But that is not consider the cooling rate at each temperature. This study assessed the effect of the cooling rate at each temperature point. Social implications Manufacturers need to know the effect of the cooling rate to optimize the corrosion resistance, and this study can be applied in the industrial scene. Originality/value SDSS is hard the optimization because SDSS is a dual-phase stainless steel. Corrosion resistance can be optimized by controlling heat treatment temperature and the cooling rate. Anyone not studied the effect of the cooling rate at each temperature. The effect of the cooling rate should be considered to optimize the corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document