Influence of SiC Content and Heat Treatment on the Corrosion Resis-Tance and Oxidation Resistance of Ni-P-SiC Composite Coating

2015 ◽  
Vol 817 ◽  
pp. 479-483
Author(s):  
Pan Li ◽  
Wan Chang Sun ◽  
Jun Gao ◽  
Quan Zhou ◽  
Pei Zhang

Ni-P alloy and SiC micron particles were codeposited on Q235 steel by electroless plating. The composition, microstructure, micro-hardness, corrosion resistance and oxidation resistance of the composite coating were studied. The results revealed that the deposited composite coating shows dispersed SiC particles and continuous Ni-P matrix. When the content of SiC was 8g/L and the heat treatment temperature was 300°C, the corrosion potential and corrosion current of Ni-P-SiC coating were-0.292V, and 8.2×10-7 A/cm2, respectively, while those of Ni-P composite coating were-0.501V, and 4.2×10-5 A/cm2, respectively. Ni-P-SiC composite coating with high content of SiC exhibits better oxidation resistance than Ni-P coating.

2013 ◽  
Vol 765 ◽  
pp. 639-643 ◽  
Author(s):  
Pei Hu Gao ◽  
Jian Ping Li ◽  
Zhong Yang ◽  
Yong Chun Guo ◽  
Yan Rong Wang

In this study, Al-12Si alloy coatings with different thickness were prepared through flame spray on the surface of the AZ91 magnesium alloy to improve its corrosion resistance. The corrosion resistance was characterized through corrosion potential using electrochemical methods. The Al-12Si alloy coatings were heat treated at 100 °C, 200 °C and 300 °C for 6, 12, 18 and 24 hours. The effects of heat treatment temperature and time on the coatings’ corrosion resistance were discussed. It was found that there were no phase changes during the deposition of Al-12Si coatings through flame spray and heat treatment. The greater the coating thickness was, the higher the corrosion potential was. After annealing, the inner microstructure of the Al-12Si coating was densified furtherly and the annealed coatings had higher corrosion potential and better corrosion resistance. The coating annealed at 100 °C for 18 hours had the highest corrosion potential and the best corrosion resistance in the same coating thickness.


2014 ◽  
Vol 941-944 ◽  
pp. 1585-1588
Author(s):  
Zu Xiao Yu ◽  
De Tao Zheng ◽  
Hong Guo ◽  
Yong Liu ◽  
Yuan Liang Luo ◽  
...  

To improve the wear resistance and anti-corrosion properties of the aluminum, the electroless plating Ni-W-Mo-P alloy on the aluminum is necessary. The influences of heat treatment and additives (stabilizers) on the porosity, deposition rate, corrosion current, corrosion potential, microhardness and wear resistance of electroless plating Ni-W-Mo-P alloy coating, were investigated using electrochemical methods, etc. The results show that the deposition rate and anti-corrosion properties of electroless plating Ni-W-Mo-P are improved when the stabilizers, including KI (1mg/L) and “KIO3 (1mg/L) + Pb (Ac)2 (1mg/L)”, are added into bath, respectively. In addition, the maximum hardness (902 HV) and good wear resistance of Ni-W-Mo-P coatings are obtained when heated at 400°C (1h). However, its corrosion resistance is worse. Its microhardness is also obviously improved after heated at 200°Cfor 6 h, and the microhardness reaches to 950 HV.


2017 ◽  
Vol 62 (4) ◽  
pp. 2101-2106
Author(s):  
M. Kciuk ◽  
S. Lasok

AbstractThe paper presents the influence of heat treatment on the structure and corrosion resistance of X5CrNi18-10 steel. To determine the structure which has been obtained after heat treatment the methods of light and scanning electron microscopy with EDS microanalysis were used. The electrochemical corrosion properties of the investigated steel were studied in 3.5% NaCl solution using potentiodynamic polarization tests. Basing on the registered curves, the corrosion current, polarization resistance and corrosion potential were determined. The corrosion tests were followed by fractographic researches.


Author(s):  
Zhiyi Jin ◽  
Zhenqiang Yao ◽  
Hong Shen

Abstract Austenitic stainless steel was cladded with Cobalt-based alloy by means of Tungsten inert gas (TIG) welding to improve the performance of the working parts such as the thrust bearing plates under dynamic loads and corrosive liquid. Specimens were prepared with different welding parameters, namely the cladding current, preheating temperature, inter-layer temperature and post heat treatment temperature, so as to investigate their influence on micro-hardness, as well as tensile and bending strength. It is revealed that the lower welding current coincides with higher micro-hardness as well as tensile and bending strength. The higher inter-layer temperature will result inhigher overlay micro-hardness. The post weld heat treatment temperature influences the bending strength of the overlay weld specimens. In addition, the accumulation of Cr and Ni compounds on weldment surface is found to coincide with higher corrosion resistance in over-layers by means of XRD.


2014 ◽  
Vol 809-810 ◽  
pp. 610-614 ◽  
Author(s):  
Miao Miao Tian ◽  
Wan Chang Sun ◽  
Qin Shi ◽  
Ying Wang ◽  
Qing Hao Yang

Ni-P-multi-walled carbon nanotubes (Ni-P-MWNTs) composite coating was successfully co-deposited on 45 steel substrate by electroless plating. The microscopic morphology of Ni-P-MWNTs composite coating was observed by SEM. The influences of CNTs concentration in plating bath on the microstructure and corrosion resistance of the composite coating were investigated. The results indicated that the deposited composite coating shows dispersed CNTs and continuous Ni-P matrix, and there are no pores and cracks and other defects at the interface between the substrate and composite coating, and the thickness of the composite coating is about 50 μm. The Ni-P-MWNTs composite coating with 0.3g/L CNTs in bath displayed the best corrosion resistance, the corrosion potential of the composite coating is-0.372V.


2011 ◽  
Vol 339 ◽  
pp. 261-264
Author(s):  
Huan Yang ◽  
Shi Qiu ◽  
Yu Feng Lu ◽  
Xiao Li Yin ◽  
Zhen Xing Liu

The properties of Ni-B composite coating and corrosion resistance on the surface of 45 steel were investigated in this paper. An optimal component of plating solution was determined by the measurements of the stability of different component of plating solution and coating hardness as well as corrosion rate under different heat treatment temperature. The experimental results indicated that, when the heat treatment temperature was 300°C, the coating hardness reached 257HV and the corrosion rate was less than 0.15g•m-1•h-1, therefore the coating possessed high corrosion resistance.


2021 ◽  
Vol 40 (1) ◽  
pp. 56-62
Author(s):  
M. Abdullahi ◽  
L.S. Kuburi ◽  
P.T. Zubairu ◽  
U. Jabo ◽  
A.A. Yahaya ◽  
...  

This paper, studied the effect of heat treatment and anodization on corrosion resistance of aluminum alloy 7075 (AA7075), with a view to improving its corrosion resistance. Microstructure and micro hardness of the anodic film of the samples were studied with the aid of optical metallurgical microscope and automated micro hardness testing machine. Linear polarization methods were used to assess the corrosion behaviour of the alloy in 0.5M HCl. The microstructure of the annealed sample showed formation of dendrites while precipitation hardened samples in palm kernel oil and SAE 40 engine oil showed precipitates of MgZn2. The SEMS result showed pores and micro cracks on the surfaces of the anodized samples, with the as cast and anodized sample in sulfuric acid exhibiting most compact with few pores. The as cast and sulfuric acid anodized sample shows highest micro hardness value of 205.33 HV, while the least value of 150.67 HV was recorded in sample precipitation hardened in SAE 40 engine oil and anodized in sulfuric acid. Analysis of the potentiodynamic polarization data and curves showed a linear relationship (decrease in icorr, decreases the corrosion rate) between current density and the corrosion rate in all the samples. Higher polarization resistance of 15.093 Ω/cm2 was recorded by the as cast and Sulfuric acid (SA) anodized sample while the precipitation treated in SAE 40 engine oil plus SA anodized sample recorded lowest polarization resistance of 5.2311 Ω/cm2. Heat treatment alone improves corrosion resistance of AA 7075 in 0.5 M HCl solution but heat treatment plus SA anodization does not improve corrosion resistance in the same environment.


2012 ◽  
Vol 184-185 ◽  
pp. 1175-1180
Author(s):  
Guo Liang Li ◽  
Xiao Hua Jie ◽  
Bi Xue Yang

Amorphous Cr–C alloy coating was prepared by electrodepositing. The microhardness of the coating was tested after annealing from 100°C to 800°C and the crystallization evolution was studied by the analysis of X-ray diffraction (XRD) and differential scanning caborimetry (DSC). The results showed that the crystallization evolution of the coating began at 300°C and finished around 450°C, and intermetallic compound Cr7C3and Cr23C6appeared when heat treatment temperature reached around 600°C. The microhardness, corrosion resistance as well as the adhesion of the coating all increased first with the temperature and then dropped until it attained the proper values. The microhardness reached the maximum of 1610HV0.025at 600°C. While the corrosion resistance and the adhesion force attained the peak value at about 400°C.


2004 ◽  
Vol 449-452 ◽  
pp. 533-536
Author(s):  
M. Aoyama ◽  
K. Tahashi ◽  
K. Matsuno

The present study examined the effects of heat treatment and the addition of Cu-Ni alloy on the corrosion resistance of the matrix of spheroidal graphite cast iron in aqueous environments. Test materials of white cast iron and carbon steel were used for comparison with spheroidal graphite cast iron. The alloy spheroidal graphite cast iron that added Cu and Ni was prepared. The spheroidal graphite cast iron was subjected to three kinds of heat treatment to adjust the matrix: annealing, oil quenching, and austemper heat treatment. In electrochemical tests, measurements of corrosion electrode potential and cathode and anode polarization were used. The following was clarified from the relationship between the electrode potential and current density of each of the materials in each of the solution. The alloy spheroidal graphite cast iron had a high corrosion electrode potential owing to the addition of Cu-Ni, and tended to have a low corrosion current density. This demonstrates that in any of the materials having a matrix adjusted by heat treatment, the addition of Cu-Ni increased the corrosion resistance. The corrosion current density was highest in a sulfuric acid environment.


Sign in / Sign up

Export Citation Format

Share Document