An Optimized 3D Probe Using Sensitivity and Compliance Analysis

Author(s):  
Weikang Zheng ◽  
Zhigang Liu ◽  
Junkang Guo

Abstract High-precision micro/nano probe plays an increasingly important role in manufacturing and measurement. The multi-arm elastic mechanism that can produce deformation under the contact force is widely used in the design of probe. The striking feature of this mechanism is that multiple variables are coupled to each other and are not easily separated. However, the transfer matrix of probe, rather than a multivariable decoupling model, is widely used as a measurement model in traditional research. Transfer matrix appears as a “black box” and does not reveal working principles of probe. Our previous research proposed a 3D decoupling model. The 3D model presents the coupling relationship between input and output variables, and also finishes a theoretical explanation of complex features of 3D probe. Recent studies have found that this decoupling model has practical value in parameter and shape optimization of probe. As the optimized purpose, two indicators — sensitivity and compliance (reciprocal of stiffness) are proposed from the model. The increased sensitivity means the probe has a lower resolution requirement for the capacitive sensor used. High compliance of probe means small contact force between the stylus ball and workpiece. Excessive stiffness can cause excessive contact forces that damages surface of workpiece. Combined with theoretical model and finite element analysis (FEA), the key parameters affecting sensitivity and compliance of probe are extracted, and a new optimized elastic mechanism based on an original Hexflex mechanism. The new optimized probe has better performance with sensitivity, input compliance, output compliance increased by 78.6%, 48.4%, 157.7%, respectively.

2002 ◽  
Vol 124 (3) ◽  
pp. 178-183 ◽  
Author(s):  
Yeh-Liang Hsu ◽  
Yuan-Chan Hsu ◽  
Ming-Sho Hsu

An electronic connector provides a separable interface between two subsystems of an electronic system. The contact spring is probably the most critical component in an electronic connector. Mechanically, the contact spring provides the contact normal force, which establishes the contact interface as the connector is mated. However, connector manufacturers have a basic struggle between the need for high normal contact forces and low insertion forces. Designing connectors with large numbers of pins that are used with today’s integrated circuits and printed circuit boards often results in an associated rise in connector insertion force. It is possible to lower the insertion force of a connector by redesigning the geometry of the contact spring, but this also means a decrease in contact normal force. In this paper, structural shape optimization techniques are used to find the optimal shape of the contact springs of an electronic connector. The process of the insertion of a PCB into the contact springs of a connector is modeled by finite element analysis. The maximum insertion force and the contact normal force are calculated. The effects of several design parameters are discussed. The geometry of the contact springs is then parameterized and optimized. The required insertion force is minimized while the normal contact force and the resulting stress are maintained within specified values. In our example, the insertion force of the final contact spring design is reduced to 68.3% of that of the original design, while the contact force and the maximum stress are maintained within specified values.


2021 ◽  
Vol 50 (02) ◽  
Author(s):  
NGOC THAI HUYNH ◽  
CONG RO HOANG ◽  
TRUNG KIEN TRAN ◽  
VAN HOAI LE

The investigation analyzes effects of clearance size in revolute and spherical joints with clearance on rigid-flexible dynamic of a space slider crank mechanism by finite element method. The model of the mechanism was designed by Solidworks and then velocity, acceleration, displacement, stress and contact force were determined by finite element analysis of rigid-transient dynamic in ANSYS. The results simulation indicated that the clearance size in revolute and spherical with clearance has sightly effected on the velocity of the slider, but has significantly effected on acceleration, contact force as journal and ball impact into bearing and socket with high peaks of acceleration and contact force as presented in the graph of acceleration and contact forces. The graph outlined that journal and ball motion with three types: free light, contact and impact motion. Clearance size created deviation for the displacement of the slider from 4.29 mm to 9.87 mm and maximum principal stress increases from 8.4 MPa to 10 MPa when clearance size increases from 0 mm to 0.3 mm.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


2014 ◽  
Vol 672-674 ◽  
pp. 1550-1553
Author(s):  
Zhen Guo Shang ◽  
Zhong Chao Ma ◽  
Zhen Sheng Sun

A procedure for obtaining the load distribution in a four point contact wind turbine yaw bearing considering the effect of the structure’s elasticity is presented. The inhomogeneous stiffness of the supporting structures creates a variation in the results obtained with a rigid model. A finite element model substituting the rolling elements with nonlinear compression springs has been built to evaluate the effect of the supporting structure elasticity on the contact forces between the rolling elements and the raceways.


Author(s):  
Di Su ◽  
Yuichiro Tanaka ◽  
Tomonori Nagayama

<p>Expansion joints on bridges should accommodate cyclic movements to minimize imposition of secondary stresses in the structure. However, these joints are highly susceptible to severe and repeated vehicular impact that results their inherent discontinuity. In this paper, a portable on- board system including accelerometers and a drive recorder to evaluate the vehicular contact force on bridge joints is proposed. First, from the acceleration responses of the vehicle, the contact force exerted on the road surface is estimated from a half-car model by Kalman Filter. Next, extraction of the expansion joints is performed by object detection from videos taken by the drive recorder. Finally, a relative comparison of the contact forces acting on joints is performed, with location identification on the map. The proposed system benefits to utilize the dynamic contact forces results from on-board system to detect the potential risky joints more precisely and efficiently.</p>


Author(s):  
Jiun-Ru Chen ◽  
Wei-En Chen ◽  
CH Liu ◽  
Yin-Tien Wang ◽  
CB Lin ◽  
...  

A procedure for inverse kinetic analysis on two hard fingers grasping a hard sphere is proposed in this study. Contact forces may be found for given linear and angular accelerations of a spherical body. Elastic force-displacement relations predicted by Hertz contact theory are used to remove the indeterminancy produced by rigid body modelling. Two types of inverse kinetic analysis may be dealt with. Firstly, as the fingers impose a given tightening displacement on the body, and carry it to move with known accelerations, corresponding grasping forces may be determined by a numerical procedure. In this procedure one contact force may be chosen as the principal unknown, and all other contact forces are expressed in terms of this force. The numerical procedure is hence very efficient since it deals with a problem with only one unknown. The solution procedure eliminates slipping thus only nonslip solutions, if they exist, are found. Secondly, when the body is moving with known accelerations, if the grasping direction of the two fingers is also known, then the minimum tightening displacement required for non-sliding grasping may be obtained in closed form. In short, the proposed technique deals with a grasping system that has accelerations, and in this study the authors show that indeterminancy may be used to reduce the complexity of the problem.


1997 ◽  
Vol 13 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Franck Quaine ◽  
Luc Martin ◽  
Jean-Pierre Blanchi

This manuscript describes three-dimensional force data collected during postural shifts performed by individuals simulating rock-climbing skills. Starting from a quadrupedal vertical posture, 6 expert climbers had to release their right-hand holds and maintain the tripedal posture for a few seconds. The vertical and contact forces (lateral and anteroposterior forces) applied on the holds were analyzed in two positions: an “imposed” position (the trunk far from the supporting wall) and an “optimized” position (the trunk close to the wall and lower contact forces at the holds). The tripedal postures performed in the two positions were achieved by the same pattern of vertical and contact forces exerted by the limbs on the holds. In the optimized position, the transfer of the forces was less extensive than in the imposed position, so that the forces were exerted primarily on the ipsilateral hold. Moreover, a link between the contact force values and the couple due to body weight with respect to the feet was shown.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mianfang Ruan ◽  
Li Li ◽  
Weiping Zhu ◽  
Tianchen Huang ◽  
Xie Wu

A novel device has been developed to assess eccentric hamstring strength during the Nordic hamstring exercise (NHE) by measuring the contact force at the ankle hook (brace). The purpose of this study was to determine the correlation between the force measured at the ankle hook and the hamstring force estimated by a low extremity model. Thirteen male college sprinters were recruited to perform NHE on an instrumented device Nordbord (Vald Performance, Australia). Contact forces were measured at a sampling rate of 50 Hz at the hooks using the uniaxial load cells. 3D kinematics were measured simultaneously at a sampling rate of 200 Hz using a 16-camera motion analysis system (Vicon Motion Analysis, Oxford, United Kingdom) during the NHE. The data were processed with Visual 3D (C-Motion, Germantown, MD, United States) and OpenSim (NCSRR, Stanford, CA, United States) to calculate the knee joint center’s coordinates and hamstring moment arms during NHE. A static low extremity model was built to estimate the hamstring force during NHE. We have observed a significant but not very high correlation (r2 = 0.58) between peak hamstring force and the peak contact force at the ankle hook. The peak contact force measured at the ankle hook can only explain a little more than half of the variations in peak hamstring muscle forces during NHE. Caution must be exercised when assessing the eccentric hamstring strength using the ankle contact force during NHE.


2010 ◽  
Vol 4 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Paola Formento Catalfamo ◽  
Gerardo Aguiar ◽  
Jorge Curi ◽  
Ariel Braidot

Previous research has shown that an increase in hamstring activation may compensate for anterior tibial transalation (ATT) in patients with anterior cruciate ligament deficient knee (ACLd); however, the effects of this compensation still remain unclear. The goals of this study were to quantify the activation of the hamstring muscles needed to compensate the ATT in ACLd knee during the complete gait cycle and to evaluate the effect of this compensation on quadriceps activation and joint contact forces. A two dimensional model of the knee was used, which included the tibiofemoral and patellofemoral joints, knee ligaments, the medial capsule and two muscles units. Simulations were conducted to determine the ATT in healthy and ACLd knee and the hamstring activation needed to correct the abnormal ATT to normal levels (100% compensation) and to 50% compensation. Then, the quadriceps activation and the joint contact forces were calculated. Results showed that 100% compensation would require hamstring and quadriceps activations larger than their maximum isometric force, and would generate an increment in the peak contact force at the tibiofemoral (115%) and patellofemoral (48%) joint with respect to the healthy knee. On the other hand, 50% compensation would require less force generated by the muscles (less than 0.85 of maximum isometric force) and smaller contact forces (peak tibiofemoral contact force increased 23% and peak patellofemoral contact force decreased 7.5% with respect to the healthy knee). Total compensation of ATT by means of increased hamstring activity is possible; however, partial compensation represents a less deleterious strategy.


Sign in / Sign up

Export Citation Format

Share Document