Application of Extended Kalman Filter to Dynamic Tracking Problem in R-LATs

Author(s):  
Wenjun Su ◽  
Kang Jia ◽  
Jun Hong ◽  
Zhigang Liu

Abstract Many applications requiring dynamic tracking have been needed in large-scale. As a novel distributed measurement system, RLATs is presented and the key techniques are shown in detail. Because of the intrinsical drawback of distributed measurement systems, the Extend Kalman Filter approach is introduced to eliminate the tracking error and improve the tracking accuracy. State space model of RLATs are formulated, and an analytical expression for the linearized measurement function is derived. Comparison with the method of LS simulated data which presented a considerable improvement and stability in accuracy and the proposed EKF method while target’s moving speed is less than 100 mm/s.

2012 ◽  
Vol 239-240 ◽  
pp. 1184-1187
Author(s):  
Qian Long Chai ◽  
Yu Long Bai ◽  
Cun Hui Dong

The methods of radar target tracking have a substantial effect on the accuracy of the whole radar systems. The basic principles and implementing steps of the Extended Kalman filter (the EKF) and the Unscented Kalman filter (the UKF) are briefly introduced. The main sources of radar observation errors and the limitation of the current methods are analyzed. According to the requirements of tracking a CV target, the EKF and the UKF are used to simulate the experiments by establishing the specific model of radar target tracking. The results show that the tracking errors can be constrained within a certain range and the whole systems also have the high tracking accuracy.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-28
Author(s):  
Yuxiang Lin ◽  
Wei Dong ◽  
Yi Gao ◽  
Tao Gu

With the increasing relevance of the Internet of Things and large-scale location-based services, LoRa localization has been attractive due to its low-cost, low-power, and long-range properties. However, existing localization approaches based on received signal strength indicators are either easily affected by signal fading of different land-cover types or labor intensive. In this work, we propose SateLoc, a LoRa localization system that utilizes satellite images to generate virtual fingerprints. Specifically, SateLoc first uses high-resolution satellite images to identify land-cover types. With the path loss parameters of each land-cover type, SateLoc can automatically generate a virtual fingerprinting map for each gateway. We then propose a novel multi-gateway combination strategy, which is weighted by the environmental interference of each gateway, to produce a joint likelihood distribution for localization and tracking. We implement SateLoc with commercial LoRa devices without any hardware modification, and evaluate its performance in a 227,500-m urban area. Experimental results show that SateLoc achieves a median localization error of 43.5 m, improving more than 50% compared to state-of-the-art model-based approaches. Moreover, SateLoc can achieve a median tracking error of 37.9 m with the distance constraint of adjacent estimated locations. More importantly, compared to fingerprinting-based approaches, SateLoc does not require the labor-intensive fingerprint acquisition process.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2269-2282
Author(s):  
D Mester ◽  
Y Ronin ◽  
D Minkov ◽  
E Nevo ◽  
A Korol

Abstract This article is devoted to the problem of ordering in linkage groups with many dozens or even hundreds of markers. The ordering problem belongs to the field of discrete optimization on a set of all possible orders, amounting to n!/2 for n loci; hence it is considered an NP-hard problem. Several authors attempted to employ the methods developed in the well-known traveling salesman problem (TSP) for multilocus ordering, using the assumption that for a set of linked loci the true order will be the one that minimizes the total length of the linkage group. A novel, fast, and reliable algorithm developed for the TSP and based on evolution-strategy discrete optimization was applied in this study for multilocus ordering on the basis of pairwise recombination frequencies. The quality of derived maps under various complications (dominant vs. codominant markers, marker misclassification, negative and positive interference, and missing data) was analyzed using simulated data with ∼50-400 markers. High performance of the employed algorithm allows systematic treatment of the problem of verification of the obtained multilocus orders on the basis of computing-intensive bootstrap and/or jackknife approaches for detecting and removing questionable marker scores, thereby stabilizing the resulting maps. Parallel calculation technology can easily be adopted for further acceleration of the proposed algorithm. Real data analysis (on maize chromosome 1 with 230 markers) is provided to illustrate the proposed methodology.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2528
Author(s):  
Songlin Bi ◽  
Yonggang Gu ◽  
Jiaqi Zou ◽  
Lianpo Wang ◽  
Chao Zhai ◽  
...  

A high precision optical tracking system (OTS) based on near infrared (NIR) trinocular stereo vision (TSV) is presented in this paper. Compared with the traditional OTS on the basis of binocular stereo vision (BSV), hardware and software are improved. In the hardware aspect, a NIR TSV platform is built, and a new active tool is designed. Imaging markers of the tool are uniform and complete with large measurement angle (>60°). In the software aspect, the deployment of extra camera brings high computational complexity. To reduce the computational burden, a fast nearest neighbor feature point extraction algorithm (FNNF) is proposed. The proposed method increases the speed of feature points extraction by hundreds of times over the traditional pixel-by-pixel searching method. The modified NIR multi-camera calibration method and 3D reconstruction algorithm further improve the tracking accuracy. Experimental results show that the calibration accuracy of the NIR camera can reach 0.02%, positioning accuracy of markers can reach 0.0240 mm, and dynamic tracking accuracy can reach 0.0938 mm. OTS can be adopted in high-precision dynamic tracking.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuyu Hao ◽  
Shugang Li ◽  
Tianjun Zhang

Purpose In this study, a physical similarity simulation plays a significant role in the study of crack evolution and the gas migration mechanism. A sensor is deployed inside a comparable artificial rock formation to assure the accuracy of the experiment results. During the building of the simulated rock formation, a huge volume of acidic gas is released, causing numerous sensor measurement mistakes. Additionally, the gas concentration estimation approach is subject to uncertainty because of the complex rock formation environment. As a result, the purpose of this study is to introduce an adaptive Kalman filter approach to reduce observation noise, increase the accuracy of the gas concentration estimation model and, finally, determine the gas migration law. Design/methodology/approach First, based on the process of gas floatation-diffusion and seepage, the gas migration model is established according to Fick’s second law, and a simplified modeling method using diffusion flux instead of gas concentration is presented. Second, an adaptive Kalman filter algorithm is introduced to establish a gas concentration estimation model, taking into account the model uncertainty and the unknown measurement noise. Finally, according to a large-scale physical similarity simulation platform, a thorough experiment about gas migration is carried out to extract gas concentration variation data with certain ventilation techniques and to create a gas chart of the time-changing trend. Findings This approach is used to determine the changing process of gas distribution for a certain ventilation mode. The results match the rock fissure distribution condition derived from the microseismic monitoring data, proving the effectiveness of the approach. Originality/value For the first time in large-scale three-dimensional physical similarity simulations, the adaptive Kalman filter data processing method based on the inverse Wishart probability density function is used to solve the problem of an inaccurate process and measurement noise, laying the groundwork for studying the gas migration law and determining the gas migration mechanism.


2011 ◽  
Vol 21 (12) ◽  
pp. 3619-3626 ◽  
Author(s):  
ALBERTO CARRASSI ◽  
STÉPHANE VANNITSEM

In this paper, a method to account for model error due to unresolved scales in sequential data assimilation, is proposed. An equation for the model error covariance required in the extended Kalman filter update is derived along with an approximation suitable for application with large scale dynamics typical in environmental modeling. This approach is tested in the context of a low order chaotic dynamical system. The results show that the filter skill is significantly improved by implementing the proposed scheme for the treatment of the unresolved scales.


Author(s):  
Zhengsheng Chen ◽  
Minxiu Kong

To obtain excellent comprehensive performances of the planar parallel manipulator for the high-speed application, an integrated optimal design method, which integrated dimensional synthesis, motors/reducers selection, and control parameters tuning, is proposed, and the 3RRR parallel manipulator was taken as the example. The kinematic and dynamic performances of condition number, velocity index, acceleration capability, and low-order frequency are taken into accounts for the dimensional synthesis. Then, to match motors/reducers parameters and keep an economical cost, the constraint equations and the parameters library are built, and the cost is chosen as one of the optimization objectives. Also, to get high tracking accuracy, the dynamic forward plus proportional–derivative control scheme is introduced, and the tracking error is chosen as one of the optimization objectives. Hence, the optimization model including dimensional synthesis, motors/reducers selection and controller parameters tuning is established, which is solved by the genetic algorithm II (NSGA-II). The result shows that comprehensive performances can be effectively promoted through the proposed integrated optimal design, and the prototype was constructed according to the Pareto-optimal front.


Sign in / Sign up

Export Citation Format

Share Document