Additive Manufacturing With Ceramics

Author(s):  
Kjetil Cline ◽  
Andrew LaFlam ◽  
Logan Smith ◽  
Margaret Nowicki ◽  
Nicholas Ku

Abstract The purpose of this project is to design a device that improves the performance of a ceramic additive manufacturing (AM) 3D printer constructed by Army Research Labs (ARL). ARL modified a standard LulzBot Taz 6 3D printer to print a ceramic slurry mixture of Boron Carbide (B4C) and Silicon Carbide (SiC) instead of plastic filament. Since these compounds are often used in body armor, ARL has been observing the effects on properties when these components are 3D printed. The current printer utilizes an auger in the print head to receive and mix the B4C and SiC slurries and extrude the combined slurry out of the print nozzle. The current design is limited in its ability to thoroughly mix the slurries during the printing process. Therefore, team Concept Creators has designed an improved auger that will increase the mixedness of the slurries, thus increasing the print quality of the composite specimen.

2021 ◽  
Author(s):  
Thomas J. May ◽  
Babak Eslami ◽  
Kamran Fouladi

Abstract Additive manufacturing has become a widely utilized process in industrial, academic, and household applications. Previous studies have demonstrated that non-optimum humidity conditions can adversely impact the print quality of parts printed from plastic filaments by changing their mechanical properties, such as elastic modulus and ultimate strength. This study utilized a computational fluid dynamics (CFD) approach and experimental testing to design a system that yields a more uniform humidity distribution in a 3-dimensional (3D) printer printing region. The study resulted in an optimized enclosure with significantly higher relative humidity (RH) uniformity in the print volume. The simulations predicted that the optimized enclosure would improve the uniformity by about 65%, while experimental testing pointed to even more significant improvement at about 75%. As a case study, tensile testing of 3D printed specimens made from NinjaFlex© filamenets under the optimum environmental conditions showed 11% higher ultimate strength and more elastic behavior than specimens printed using the baseline model.


Author(s):  
Dylan Bender ◽  
Ahmad Barari

This paper presents a methodology to find the optimum build orientation in the additive manufacturing of topologically optimized structural parts. The outlined methodology is based on applying a differential operator to the density distribution matrix of a topologically optimized design. The methodology is developed for 2D parts, where the profile of the geometry is constant. The 2D spatial difference operator effectively calculates the elemental density gradient vector, ultimately used to calculate the angles between i) overhanging surfaces of a topology optimized design, and ii) the build platform of a 3D printer. These angles, referred to as build angles, are used to estimate the relative amount of supporting structure required to print the design at a prescribed part orientation. This methodology can potentially be adopted to simulate the additive manufacturing surface quality of density based, structural topology optimization designs.


“Slicing tool” or “Slicing Software” computes the intersection curves of models and slicing planes. They improve the quality of the model being printed when given in the form of STL file. Upon analyzing a specimen that has been printed using two different slicing tools, there was a drastic variation on account of the mechanical properties of the specimen. The ultimate tensile strength and the surface roughness of the material vary from one tool to another. This paper reports an investigation and analysis of the variation in the ultimate tensile strength and the surface roughness of the specimen, given that the 3D printer and the model being printed is the same, with a variation of usage of slicing software. This analysis includes ReplicatorG, Flashprint as the two different slicing tools that are used for slicing of the model. The variation in the ultimate tensile strength and the surface roughness are measured and represented statistically through graphs. An appropriate decisive conclusion was drawn on the basis of the observations and analysis of the experiment on relevance to the behavior and mechanical properties of the specimen.


History of additive manufacturing started in the 1980s in Japan. Stereolithography was invented first in 1983. After that tens of other techniques were invented under the common name 3D printing. When stereolithography was invented rapid prototyping did not exists. Tree years later new technique was invented: selective laser sintering (SLS). First commercial SLS was in 1990. At the end of 20t century, first bio-printer was developed. Using bio materials, first kidney was 3D printed. Ten years later, first 3D Printer in the kit was launched to the market. Today we have large scale printers that printed large 3D objects such are cars. 3D printing will be used for printing everything everywhere. List of pros and cons questions rising every day.


2021 ◽  
Vol 11 (18) ◽  
pp. 8545
Author(s):  
So-Ree Hwang ◽  
Min-Soo Park

Additive manufacturing, commonly called 3D printing, has been studied extensively because it can be used to fabricate complex structures; however, polymer-based 3D printing has limitations in terms of implementing certain functionalities, so it is limited in the production of conceptual prototypes. As such, polymer-based composites and multi-material 3D printing are being studied as alternatives. In this study, a DLP 3D printer capable of printing multiple composite materials was fabricated using a movable separator and structures with various properties were fabricated by selectively printing two composite materials. After the specimen was fabricated based on the ASTM, the basic mechanical properties of the structure were compared through a 3-point bending test and a ball rebound test. Through this, it was shown that structures with various mechanical properties can be fabricated using the proposed movable-separator-based DLP process. In addition, it was shown that this process can be used to fabricate anisotropic structures, whose properties vary depending on the direction of the force applied to the structure. By fabricating multi-joint grippers with varying levels of flexibility, it was shown that the proposed process can be applied in the fabrication of soft robots as well.


Author(s):  
Tuan Anh Tran

There is a gap between 3D Printing’s fast pace of development and the acceptance of 3D Printing technologies by other industries and applications. This hesitation comes mostly from unanswered questions about the consistency, reproducibility, and quality of 3D printed products. Although the list of excellent examples demonstrating its potential keeps expanding, a wide and thorough adoption of the technology requires crucial, yet currently missing elements including consensus standards, quality control procedures, and measuring methodologies. Progress in developing these elements, however, has been rather limited.


2021 ◽  
Vol 12 (2) ◽  
pp. 371-380
Author(s):  
Sally Cahyati ◽  
◽  
Haris Risqy Aziz

Rapid Prototyping (RP) is a manufacturing process that produces a 3D model CAD to be a real product rapidly by using additive manufacturing technology. In this case, the product will print layer by layer uses a 3D printer machine. The 3D printer requires slicer software to convert CAD data into data that a 3D printer machine can read. Research is done to analyze the effect of three kinds of slicer software on 3D printing objects on the accuracy and surface roughness of the product. The 3D model CAD is sliced using three different slicer software, namely Ideamaker, Repetier Host, and Cura. The slice model result from each slicer will be printed on a 3D printer machine with the same process parameters to be compared. Then the product's dimensional and surface roughness will be measured to determine the effect of each slicer on product quality. The best quality of the product reflected the most suitable slicer software for the 3D printing machine that used. The best results achieved by Cura slicer because it has resulted in small dimensional deviations (max 0,0308±0,0079) and stabile high surface roughness of the product (max 1,585+059).


Author(s):  
Jim Flowers

Is the primary purpose of a 3D printer to manufacture a product? Yes, but students and teachers can also use 3D printers to learn about and engage in research and experimentation. This could begin with product research and development, then expand to technical areas based on additive manufacturing technologies, the physical and mechanical properties of additive manufacturing materials, and the properties of 3D printed products. Student inquiry can take the form of formal or informal experimentation and observational studies. Although dedicated testing equipment can facilitate more demanding investigations, it is possible for quite a bit of experimentation to be done with little or no dedicated testing equipment. It is hoped that the reader will identify different educational experiences with experimentation that might fit their learners' needs and see 3D printers as tools for conducting and teaching about research, including product research and development and research into process engineering and materials.


2019 ◽  
Vol 29 ◽  
pp. 100819 ◽  
Author(s):  
Devin J. Roach ◽  
Craig M. Hamel ◽  
Conner K. Dunn ◽  
Marshall V. Johnson ◽  
Xiao Kuang ◽  
...  

Author(s):  
Joseph Dei Rossi ◽  
Ozgur Keles ◽  
Vimal Viswanathan

Abstract Additive manufacturing is a potentially disruptive technology with a rapidly growing market. The recent development of RepRap style 3D printers has made this technology available to the public at a low cost. While these 3D printers are being used for a variety of purposes, many mechanical engineering students use them for prototyping in their projects. The quality of the 3D printed parts has been a concern in such cases. There are many variables within the operation of these printers that can be varied to obtain optimum print quality. This study explores the use of externally induced mechanical vibrations to the nozzle tip as a potential method to improve the quality of 3D printed parts. Induced vibration is expected to decrease the porosity of printed parts and improve the cohesion between print beads, ultimately improving their mechanical properties. The objective is to understand the positional accuracy of the prints with the added vibration and then to determine the optimum level of vibration to achieve best quality prints. For the study, the extruder filament is replaced with a pointed-tip pen that can mark the exact location where the printer delivers the material. A comparison between the locations marked by the pen with and without vibrations shows that the errors induced by the added vibration are not significantly different from those caused by the uncertainties of the printer itself. Further, this study also explores the optimum motor speeds to achieve a uniform distribution of material and determines medium motor speeds that provide maximum amplitude of vibration which are more desirable for a uniform infill.


Sign in / Sign up

Export Citation Format

Share Document