A Study of the Effect of Extended Hounsfield Unit Range and Voxel Size on Defect Detection in Friction Stir Welds

Author(s):  
Ahmad M. R. Baydoun ◽  
Ramsey F. Hamade

Abstract Friction stir welding (FSW) is a novel welding method that is garnering attention, in part, due to its ability to join dissimilar materials. One of the challenges in producing dissimilar friction welded joints is ensuring the welds are defect-free. Nondestructive testing (NDT) methods such as ultrasonic waves, gamma rays, X-rays, and X-ray CT, are gaining popularity as a method to detect internal defects in FSW joints. In this study, dissimilar AA1050-AA6061-T6 FSW lap welds are Manufactured and then examined using an NDT X-ray CT technique. The effects of two critical X-ray CT scanning parameters (voxel size and Hounsfield unit (HU)) on the detection of internal defects are investigated. The samples are scanned via X-ray CT at two different voxel sizes (2.457 E−02 and 1.420 E−03 mm3) and two HU ranges (12-bit and 16-bit depth). The generated Digital Imaging and Communications in Medicine (DICOM) images are segmented based on a proper HU threshold found via the Otsu thresholding method. The findings show that Small voxel size (higher resolution) improves the ability of detecting internal defects and improves the effectiveness of the thresholding process. Higher HU range results in a wider separation between detected material peaks, thus enhancing the effectiveness of the thresholding process as well.

2014 ◽  
Vol 93 ◽  
pp. 524-529 ◽  
Author(s):  
David J. Lawrence ◽  
William C. Feldman ◽  
Robert E. Gold ◽  
John O. Goldsten ◽  
Ralph L. McNutt

1965 ◽  
Vol 23 ◽  
pp. 45-52 ◽  
Author(s):  
C. de Jager

X-ray bursts are defined as electromagnetic radiation originating from electronic transitions involving the lowest electron shells; gamma rays are of nuclear origin. Solar gamma rays have not yet been discovered.According to the origin we have : 1.Quasi thermal X-rays, emitted by (a) the quiet corona, (b) the activity centers without flares, and (c) the X-ray flares.2.Non-thermal X-ray bursts; these are always associated with flares.The following subdivision is suggested for flare-associated bursts :


2019 ◽  
Vol 34 (2) ◽  
pp. 103-109
Author(s):  
Arnold C. Vermeulen ◽  
Christopher M. Kube ◽  
Nicholas Norberg

In this paper, we will report about the implementation of the self-consistent Kröner–Eshelby model for the calculation of X-ray elastic constants for general, triclinic crystal symmetry. With applying appropriate symmetry relations, the point groups of higher crystal symmetries are covered as well. This simplifies the implementation effort to cover the calculations for any crystal symmetry. In the literature, several models can be found to estimate the polycrystalline elastic properties from single crystal elastic constants. In general, this is an intermediate step toward the calculation of the polycrystalline response to different techniques using X-rays, neutrons, or ultrasonic waves. In the case of X-ray residual stress analysis, the final goal is the calculation of X-ray Elastic constants. Contrary to the models of Reuss, Voigt, and Hill, the Kröner–Eshelby model has the benefit that, because of the implementation of the Eshelby inclusion model, it can be expanded to cover more complicated systems that exhibit multiple phases, inclusions or pores and that these can be optionally combined with a polycrystalline matrix that is anisotropic, i.e., contains texture. We will discuss a recent theoretical development where the approaches of calculating bounds of Reuss and Voigt, the tighter bounds of Hashin–Shtrikman and Dederichs–Zeller are brought together in one unifying model that converges to the self-consistent solution of Kröner–Eshelby. For the implementation of the Kröner–Eshelby model the well-known Voigt notation is adopted. The 4-rank tensor operations have been rewritten into 2-rank matrix operations. The practical difficulties of the Voigt notation, as usually concealed in the scientific literature, will be discussed. Last, we will show a practical X-ray example in which the various models are applied and compared.


Author(s):  
Grzegorz Domański ◽  
Roman Szabatin ◽  
Piotr Brzeski ◽  
Bogumił Konarzewski

The article presents the developed structure of the novel needle proportional gas detector (NPC – Needle Proportional Counter) used for the detection of X-rays and gamma rays. The advantage of the detector is its simple mechanical construction and the possibility of detection of incident radiation in a direction parallel to the needle. The measured energy spectrum of the isotope Fe-55 by means of the developed detector is presented.


2004 ◽  
Vol 218 ◽  
pp. 219-220
Author(s):  
D. A. Leahy

LSI +61°303 outbursts are modeled as a pulsar wind nebula expanding inside the environment provided by the Be companion star's stellar wind and photon flux. A set of equations describing the system is developed and solved numerically for representative sets of parameters. Emission in X-rays through gamma-rays is due to inverse Compton emission from relativistic electrons around the pulsar. The radio emission is due to synchrotron emission of varying optical depth, which yields a varying spectral index. The peak of X-ray emission is near periastron and the peak of the radio emission is near apastron, due to reduced confining pressure on the relativistic electron cloud and its subsequent rapid expansion.


1988 ◽  
Vol 108 ◽  
pp. 446-447 ◽  
Author(s):  
M. Itoh ◽  
S. Kumagai ◽  
T. Shigeyama ◽  
K. Nomoto ◽  
J. Nishimura

Gamma-rays originating from radioactive decays of 56Ni and 56Co and hard X-rays due to Compton degradation of γ-rays have been predicted to emerge when the supernova becomes sufficiently thin. The X-ray detections by Ginga (Dotani et al. 1988) and Kvant (Sunyaev et al. 1988) and more recent report of γ-ray detections by SMM (Matz et al. 1988) were much earlier than the theoretical predictions. (See Itoh et al. 1987 and references therein.)These observations would give important constraints on the distribution of the heavy elements and 56Co in the ejecta. We adopted the hydrodynamical model 11E1Y6 (Nomoto et al. 1988) and carried out Monte Carlo simulation for photon transfer. A step-like distribution of 56Co was assumed where the mass fraction of 56Co in the layers at Mr ≤ 4.6 M⊙, 4.6 − 6 M⊙, 6 − 8 M⊙, and 8 − 10 M⊙ are XCo = 0.0128, 0.0035, 0.0021, and 0.0011, respectively. Other heavy elements were distributed with mass fractions in proportion to 56Co.


2020 ◽  
Vol 21 (10) ◽  
pp. 919-926 ◽  
Author(s):  
Zakiyeh B. Zehi ◽  
Asma Afshari ◽  
Seyyed M.A. Noori ◽  
Behrooz Jannat ◽  
Mohammad Hashemi

X-ray is a non-thermal technology that has shown good efficacy in reducing pathogenic and spoilage bacteria, viruses and parasites. X-ray hygiene technology resulted in a high microbial loss in numerous food products, such as dairy products, ready-to-eat shrimp, oysters, fresh products, strawberries, shredded iceberg lettuce, and spinach leaves. Some X-ray studies on food safety have shown that X-ray is an effective technology and is also an appropriate alternative to the electron beam and gamma rays, and can be used in the food industry without side effects on human health. Besides, we reviewed the X-ray effect on the nutritional value of food. Therefore in this study, we aimed to review the available pros and cons of current studies regarding X-rays’ effects on the food industry.


2010 ◽  
Vol 27 (4) ◽  
pp. 431-438 ◽  
Author(s):  
H. Steinle

AbstractCen A, at a distance of less than 4 Mpc, is the nearest radio-loud AGN. Its emission is detected from radio to very-high energy gamma-rays. Despite the fact that Cen A is one of the best studied extragalactic objects the origin of its hard X-ray and soft gamma-ray emission (100 keV <E< 50 MeV) is still uncertain. Observations with high spatial resolution in the adjacent soft X-ray and hard gamma-ray regimes suggest that several distinct components such as a Seyfert-like nucleus, relativistic jets, and even luminous X-ray binaries within Cen A may contribute to the total emission in the MeV regime that has been detected with low spatial resolution. As the Spectral Energy Distribution of Cen A has its second maximum around 1 MeV, this energy range plays an important role in modeling the emission of (this) AGN. As there will be no satellite mission in the near future that will cover this energies with higher spatial resolution and better sensitivity, an overview of all existing hard X-ray and soft gamma-ray measurements of Cen A is presented here defining the present knowledge on Cen A in the MeV energy range.


2017 ◽  
Vol 113 (11/12) ◽  
Author(s):  
Jacqueline S. Smilg

Computed tomography (CT) imaging of fossils has revolutionised the field of palaeontology, allowing researchers to gain a better understanding of fossil anatomy, preservation and conservation. Micro focus X-ray computed tomography (μXCT) has been far more extensively used for these purposes than medical CT (XCT) – mostly because of the exquisite detail that the μXCT scanning modality, using slices of micron thicknesses, can produce. High energy X-rays can potentially penetrate breccia more effectively than lower energy beams. This study demonstrates that lower energy beams produce superior images for prioritising breccia for preparation. Additionally, XCT scanners are numerous, accessible, fast and relatively cost-effective when compared to μXCT scanners – the latter are not freely available, scanning times are much longer and there are significant limitations on the size and weight of scannable objects. Breccia blocks from Malapa were scanned at high and lower energy and images were analysed for image quality, artifact and certainty of diagnosis. Results show that lower energy images are deemed superior to higher energy images for this particular application. This finding, taken together with the limitations associated with the use of μXCT for the imaging of the large breccia from Malapa, shows that XCT is the better modality for this specific application. The ability to choose fossil-bearing breccia, ahead of manual mechanical preparation by laboratory technicians, would allow for the optimal use of limited resources, manual preparatory skills as well as the curtailment of costs.


Sign in / Sign up

Export Citation Format

Share Document