Multibody Dynamic Model of a Double Nut Preloaded Ball Screw Mechanism With Lubrication

Author(s):  
Antonio Carlo Bertolino ◽  
Stefano Mauro ◽  
Giovanni Jacazio ◽  
Massimo Sorli

Abstract Ball screws have been investigated by several researchers from a theoretical point of view because the intrinsic complexity of experimental investigation of these mechanisms. Most of the models developed so far have been developed in quasi-static conditions ignoring inertia terms and time variability of operating conditions. A detailed multibody dynamic model of a double nut preloaded ball screw is presented in this paper, taking into account the full dynamic of each subcomponent as well as the mutual interactions. A 3D contact model is introduced, considering Hertzian normal contact and a simplified friction model based on grease lubrication. This model takes into account the time variability of the operating conditions and it is suitable to be used for prognostic and model-based design approaches. The results of dynamic simulations in presence of backlash are presented to highlight the model’s capabilities.

2021 ◽  
Vol 263 (2) ◽  
pp. 4132-4143
Author(s):  
Murat Inalpolat ◽  
Enes Timur Ozdemir ◽  
Bahadir Sarikaya ◽  
Hyun Ku Lee

In this paper, a generalized nonlinear time-varying multibody dynamic model of dual clutch transmissions (DCT) is presented. The model consists of clutches, shafts, gears and synchronizers, and can be used to model any DCT architecture. A nonlinear clutch model is used to determine the transmitted power to the transmission at any speed and clutch temperature. The clutch can be a single- or multi-plate clutch and can operate in a wet or dry-clutch configuration. A combined kinematic and powerflow simulation enables calculation of gear, shaft, bearing and clutch quasi-static loads as well as gear mesh frequencies following a duty cycle as the input. For the corresponding Linear-Time-Invariant (LTI) system model, natural frequencies and mode shapes are obtained by solving the eigenvalue problem. The modal summation technique is used to determine the steady state forced vibration response of the system. For the corresponding NTV system, Newmark's time-step marching based integration is used to determine both the steady state and transient forced vibration response of the system. The DCT model is exercised using a common transmission architecture operating at several different operating conditions. The resulting impact of changing operational conditions on gear and bearing loads as well as dynamic transmission error spectra are demonstrated.


2021 ◽  
Author(s):  
Antonio C. Bertolino ◽  
Stefano Mauro ◽  
Giovanni Jacazio ◽  
Massimo Sorli

Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.


Author(s):  
Lei Yu ◽  
Zhihua Zhao ◽  
Gexue Ren

In this paper, a multibody dynamic model is established to simulate the dynamics and control of moving web with its guiding system, where the term moving web is used to describe thin materials, which are manufactured and processed in a continuous, flexible strip form. In contrast with available researches based on Eulerian description and beam assumption, webs are described by Lagrangian formulation with the absolute nodal coordinate formulation (ANCF) plate element, which is based on Kirchhoff’s assumptions that material normals to the original reference surface remain straight and normal to the deformed reference surface, and the nonlinear elasticity theory that accounts for large displacement, large rotation, and large deformation. The rollers and guiding mechanism are modeled as rigid bodies. The distributed frictional contact forces between rollers and web are considered by Hertz contact model and are evaluated by Gauss quadrature. The proportional integral (PI) control law for web guiding is also embedded in the multibody model. A series of simulations on a typical web-guide system is carried out using the multibody dynamics approach for web guiding system presented in this study. System dynamical information, for example, lateral displacement, stress distribution, and driving moment for web guiding, are obtained from simulations. Parameter sensitivity analysis illustrates the effect of influence variables and effectiveness of the PI control law for lateral movement control of web that are verified under different gains. The present Lagrangian formulation of web element, i.e., ANCF element, is not only capable of describing the large movement and deformation but also easily adapted to capture the distributed contact forces between web and rollers. The dynamical behavior of the moving web can be accurately described by a small number of ANCF thin plate elements. Simulations carried out in this paper show that the present approach is an effective method to assess the design of web guiding system with easily available desktop computers.


2001 ◽  
Vol 122 (1) ◽  
pp. 45-72 ◽  
Author(s):  
Jeffery R. Layne ◽  
Kevin M. Passino

Author(s):  
Shunki Nishii ◽  
Yudai Yamasaki

Abstract To achieve high thermal efficiency and low emission in automobile engines, advanced combustion technologies using compression autoignition of premixtures have been studied, and model-based control has attracted attention for their practical applications. Although simplified physical models have been developed for model-based control, appropriate values for their model parameters vary depending on the operating conditions, the engine driving environment, and the engine aging. Herein, we studied an onboard adaptation method of model parameters in a heat release rate (HRR) model. This method adapts the model parameters using neural networks (NNs) considering the operating conditions and can respond to the driving environment and the engine aging by training the NNs onboard. Detailed studies were conducted regarding the training methods. Furthermore, the effectiveness of this adaptation method was confirmed by evaluating the prediction accuracy of the HRR model and model-based control experiments.


Sign in / Sign up

Export Citation Format

Share Document