Nonlinear-Time-Dependent Analysis of Micro Via-In-Pad Substrates for Solder Bumped Flip Chip Applications

2002 ◽  
Vol 124 (3) ◽  
pp. 205-211 ◽  
Author(s):  
John H. Lau ◽  
S. W. Ricky Lee ◽  
Stephen H. Pan ◽  
Chris Chang

An elasto-plastic-creep analysis of a low-cost micro via-in-pad (VIP) substrate for supporting a solder bumped flip chip in a chip scale package (CSP) format which is soldered onto a printed circuit board (PCB) is presented in this study. Emphasis is placed on the design, materials, and reliability of the micro VIP substrate and of the micro VIP CSP solder joints on PCB. The solder is assumed to obey Norton’s creep law. Cross-sections of samples are examined for a better understanding of the solder bump, CSP substrate redistribution, micro VIP, and solder joint. Also, the thermal cycling test results of the micro VIP CSP PCB assembly is presented.

2000 ◽  
Author(s):  
John H. Lau ◽  
S. W. Ricky Lee ◽  
Stephen H. Pan ◽  
Chris Chang

Abstract An elasto-plastic-creep analysis of a low-cost micro via-in-pad (VIP) substrate for supporting a solder bumped flip chip in a chip scale package (CSP) format which is soldered onto a printed circuit board (PCB) is presented in this study. Emphasis is placed on the design, materials, and reliability of the micro VIP substrate and of the micro VIP CSP solder joints on PCB. The solder is assumed to obey Norton’s creep law. Cross-sections of samples are examined for a better understanding of the solder bump, CSP substrate redistribution, micro VIP, and solder joint. Also, the micro VIP CSP PCB assembly is subjected to thermal cycling tests.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Sandeep Chaturvedi ◽  
Shiban K. Koul

Design, fabrication, and test results of a novel 3-layer RF package using a commonly available high frequency laminate are presented in this paper. The developed package can be manufactured using standard multilayer printed circuit board (PCB) manufacturing techniques making it cost effective for commercial applications. The package exhibits excellent RF characteristics up to 6 GHz.


1999 ◽  
Vol 121 (4) ◽  
pp. 222-230
Author(s):  
D. F. Baldwin ◽  
J. T. Beerensson

Direct chip attach (DCA) packaging technologies are finding increasing application in electronics manufacturing particularly in telecommunications and consumer electronics. In these systems, bare die are interconnected directly to a printed circuit board. The two primary forms of DCA included chip on board (COB) where the die are attached face up and wirebonded to the substrate and flip chip on board (FCOB) where bumped die are interconnected active face down directly to low-cost organic substrates. In the current work, thermal management of four direct chip attach technologies is investigated. Experimental measurements are conducted exploring the junction-to-ambient thermal resistance and thermal dissipation paths for COB interconnection and three FCOB interconnect technologies including solder attach, anisotropic adhesive attach, and isotropic adhesive attach. A first-order chip-scale thermal design model is developed for flip chip assemblies exhibiting good agreement with the experimental measurements.


2000 ◽  
Vol 122 (4) ◽  
pp. 306-310 ◽  
Author(s):  
John H. Lau ◽  
S.-W. Ricky Lee

Solder joint reliability of flip chip on various thickness of printed circuit board with imperfect underfill is presented in this study. Emphasis is placed on the determination of the temperature-dependent stress and plastic strain at the corner solder joint with different crack (delamination) lengths. Also, the strain energy release rate and phase angle at the crack tip of the interface between the underfill and solder mask are obtained by fracture mechanics. [S1043-7398(00)01104-X]


Author(s):  
N. Gnanasambandam ◽  
M. Munikrishnan ◽  
V. Poyyapakkam ◽  
P. Borgesen ◽  
K. Srihari

Managing assembly yield in the Printed Circuit Board (PCB) assembly process is crucial in reducing the overall manufacturing cost of a product. Being faced with electronic components that have high interconnect (pin or solder bump) count, density, and complexity, it is extremely important to streamline the manufacturing losses arising from misplaced or poorly assembled components. In order to achieve this goal, yield models are utilized to anticipate and evaluate problems and their causes. This activity could be potentially implemented at the design stage or at least much before the product reaches the manufacturing floor. This research examines some important factors that affect area array (BGA, CSP, flip chip) assembly yields, taking a two-pronged approach to modeling. Achievable yield is classified into placement and assembly components and is estimated using a simulation model.


2021 ◽  
Vol 18 (2) ◽  
pp. 67-80
Author(s):  
John H Lau ◽  
Cheng-Ta Ko ◽  
Chia-Yu Peng ◽  
Tzvy-Jang Tseng ◽  
Kai-Ming Yang ◽  
...  

Abstract In this study, the reliability of the solder joints of a six-side molded panel-level chip-scale package (PLCSP) is investigated. Emphasis is placed on the thermal cycling test (−55°C Δ 125°C, 50-min cycle) of the six-side molded PLCSP on a printed circuit board. For comparison purpose, the one without six-side molded (ordinary) PLCSP is also subjected to the same test. The thermal cycling test results are plotted into a Weibull distribution, and the true Weibull slope and true characteristic life at 90% confidence are presented. The solder joint mean life ratio of these two cases and its confidence level are also determined. Furthermore, their solder joint failure location and failure mode are provided. Finally, a nonlinear, time- and temperature-dependent 3-D finite element simulation is performed for these two cases and correlated with the thermal cycling test results.


Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.


Author(s):  
Philipp Ritter

Abstract Next-generation automotive radar sensors are increasingly becoming sensitive to cost and size, which will leverage monolithically integrated radar system-on-Chips (SoC). This article discusses the challenges and the opportunities of the integration of the millimeter-wave frontend along with the digital backend. A 76–81 GHz radar SoC is presented as an evaluation vehicle for an automotive, fully depleted silicon-over-insulator 22 nm CMOS technology. It features a digitally controlled oscillator, 2-millimeter-wave transmit channels and receive channels, an analog base-band with analog-to-digital conversion as well as a digital signal processing unit with on-chip memory. The radar SoC evaluation chip is packaged and flip-chip mounted to a high frequency printed circuit board for functional demonstration and performance evaluation.


2021 ◽  
Vol 11 (15) ◽  
pp. 6885
Author(s):  
Marcos D. Fernandez ◽  
José A. Ballesteros ◽  
Angel Belenguer

Empty substrate integrated coaxial line (ESICL) technology preserves the many advantages of the substrate integrated technology waveguides, such as low cost, low profile, or integration in a printed circuit board (PCB); in addition, ESICL is non-dispersive and has low radiation. To date, only two transitions have been proposed in the literature that connect the ESICL to classical planar lines such as grounded coplanar and microstrip. In both transitions, the feeding planar lines and the ESICL are built in the same substrate layer and they are based on transformed structures in the planar line, which must be in the central layer of the ESICL. These transitions also combine a lot of metallized and non-metallized parts, which increases the complexity of the manufacturing process. In this work, a new through-wire microstrip-to-ESICL transition is proposed. The feeding lines and the ESICL are implemented in different layers, so that the height of the ESICL can be independently chosen. In addition, it is a highly compact transition that does not require a transformer and can be freely rotated in its plane. This simplicity provides a high degree of versatility in the design phase, where there are only four variables that control the performance of the transition.


Sign in / Sign up

Export Citation Format

Share Document