A Method for Improving Component Decoupling Using Advanced Capacitor Under Ball Grid Array (ACUB)

Author(s):  
Terry Dishongh ◽  
Damion Searls ◽  
Weston C. Roth ◽  
Erik Peter

Industry demands on power delivery continue to increase with higher performance silicon products. As a result, higher current sustainability and better transient response are key parameters frequently sought in successful power delivery designs. One key design feature for improved transient response involves locating decoupling capacitance as close to the load as possible. At the board level, this is typically accomplished by placing capacitors around the immediate vicinity of the load. With a set of identical capacitors in parallel, total capacitance is essentially a multiple of the number of caps while the effective series resistance and inductance is divided. However the realities of package and motherboard design can often limit the number and size of the capacitors placed in the vicinity of the load. In some cases, the capacitors may interfere with other routings to and from the component. In other cases, placement of the capacitors with respect to the DC current path may limit their effectiveness by inducing a large effective series inductance to the load. This paper describes a potential design method for maximizing capacitor effectiveness while minimizing its impact on other board features. The design is primarily implemented in board assembly and involves placing capacitors directly between power and ground board-component solder joints. As an extension of Capacitor Under BGA designs, this method is termed Advanced Capacitor Under BGA (ACUB). Using ACUB can improve load decoupling, but can require new approaches to board and component assembly. This paper discusses a number of potential design improvements allowed for using this design approach. In addition, factors involved in successful assembly are discussed and sets of proof-of-concept prototype designs are presented along with assembly results. From this, some designs with potential for further development are identified and next steps discussed.

Author(s):  
I Made Ginarsa ◽  
Agung Budi Muljono ◽  
I Made Ari Nrartha ◽  
Sultan Sultan

Current control scheme is commonly used in high voltage direct current (HVDC) to transmit power delivery. This scheme is done by adjusting trigger angle to regulate direct current (DC) in thyristor devices. The adaptive neuro-fuzzy inference system (ANFIS) control is widely applied for start and fault operation. But, solution for transient response of DC current in HVDC system is not clearly studied before. In this paper, supplementary control (SC) based on ANFIS is proposed to improve the transient response of the current. The SC control is designed by learning-processes and SC parameters are obtained by data-training automatically. For current reference at 1.05 pu and up-ramp at 20 pu/s, maximum overshoot is achieved at 5.12% and 7.72% for the SC and proportional integral controller (PIC), respectively. When the up-ramp is increased to 28 pu/s, the maximum overshoot is achieved at 10.01% for the SC. While, the peak overshoot for the PIC is 14.28%.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4654
Author(s):  
Andrzej Wetula ◽  
Andrzej Bień ◽  
Mrunal Parekh

Measurements of medium and high voltages in a power grid are normally performed with large and bulky voltage transformers or capacitive dividers. Besides installation problems, these devices operate in a relatively narrow frequency band, which limits their usability in modern systems that are saturated with power electronic devices. A sensor that can be installed directly on a wire and can operate without a galvanic connection to the ground may be used as an alternative voltage measurement device. This type of voltage sensor can complement current sensors installed on a wire, forming a complete power acquisition system. This paper presents such a sensor. Our sensor is built using two dielectric elements with different permeability coefficients. A finite element method simulation is used to estimate the parameters of a constructed sensor. Besides simulations, a laboratory model of a sensor was built and tested in a medium-voltage substation. Our results provide a proof of concept for the presented sensor. Some errors in voltage reconstruction have been traced to an oversimplified data acquisition and transmission system, which has to be improved during the further development of the sensor.


Author(s):  
Mads Baandrup ◽  
Ole Sigmund ◽  
Niels Aage

<p>This work applies a ultra large scale topology optimization method to study the optimal structure of bridge girders in cable supported bridges.</p><p>The current classic orthotropic box girder designs are limited in further development and optimiza­ tion, and suffer from substantial fatigue issues. A great disadvantage of the orthotropic girder is the loads being carried one direction at a time, thus creating stress hot spots and fatigue problems. Hence, a new design concept has the potential to solve many of the limitations in the current state­ of-the-art.</p><p>We present a design method based on ultra large scale topology optimization. The highly detailed structures and fine mesh-discretization permitted by ultra large scale topology optimization reveal new design features and previously unseen eff ects. The results demonstrate the potential of gener­ ating completely different design solutions for bridge girders in cable supported bridges, which dif­ fer significantly from the classic orthotropic box girders.</p><p>The overall goal of the presented work is to identify new and innovative, but at the same time con­ structible and economically reasonable, solutions tobe implemented into the design of future cable supported bridges.</p>


Author(s):  
Briana M. Lucero ◽  
Matthew J. Adams

Prior efforts in the study of engineering design employed various approaches to decompose product design. Design engineers use functional representation, and more precisely function structures, to define a product’s functionality. However, significant barriers remain to objectively quantifying the similarity between two function structures, even for the same product when developed by multiple designers. For function-structure databases this means that function-structures are implicitly categorized leaving the possibility of incorrect categorization and reducing efficacy of returned analogous correlations. Improvements to efficacy in database organization and queries are possible by objectively quantifying the similarity between function structures. The proposed method exploits fundamental properties of function-structures and design taxonomies. We convert function-structures into directed graphs (digraphs) and equivalent adjacency matrices. The conversion maintains the directed (function → flow → function) progression inherent to function-structures and enables the transformation of the function-structure into a standardized graph. For design taxonomies (e.g. D-APPS), graph nodes represent flows in a consistent (but arbitrary) ordering. By exploiting the directional properties of function-structures and defining the flows as the graphical nodes, the objective and standardized comparison of two function-structures becomes feasible. We statistically quantify the association between digraphs using the Pearson Product Moment Correlation (PPMC) for both within-group and between-group comparisons. The method was tested on three product types (ball thrower, food processor, and an ice cream maker) with function-structures defined by various designers. The method suggested herein is provided as a proof-of-concept with suggested verification and validation approaches for further development.


2019 ◽  
Author(s):  
Oscar Saborío-Romano ◽  
Ali Bidadfar ◽  
Jayachandra Naidu Sakamuri ◽  
Ömer Göksu ◽  
Nicolaos Antonio Cutululis

Diode rectifiers (DRs) have been recently suggested as a viable alternative for connecting offshore wind farms (OWFs) to HVdc, eliciting growing interest from both industry and academia. However, energisation of DR-connected OWFs is not straightforward. The present study constitutes a proof of concept of a novel energisation method for DR-connected OWFs, in which auxiliary power is provided from the shore through the HVdc link and the dc bus bar of one or more WTs. The proposed method provides an alternative with minimal additional hardware, which can be easily extended to more WTs in the OWF, increasing reliability by providing redundancy. The study includes coinciding auxiliary loads with active and reactive power components and a semi-aggregated OWF model, in which every WT is individually represented in the string containing the energising WT. Two additional sequences of simulation events are considered following the initial energisation sequence. Such sequences comprise wind power taking over the provision of the auxiliary power and the run-up to maximum (available) power production. The simulation results indicate that the proposed method is a suitable alternative for energising OWFs connected to HVdc via DRs.<br><br>The manuscript has been submitted to IEEE Transactions on Power Delivery.


建築學報 ◽  
2021 ◽  
Vol 116 (116-1) ◽  
pp. 055-061
Author(s):  
江梓瑋 江梓瑋

<p>傳統的建築設計課程皆以每學期幾次不同題型的設定,期望在設計操作的反復練習中,幫助操作者探索合適的操作方法並從中建立設計邏輯。設計題目的設定規範了操作的方向與期望的成果,但因設計發展並沒有既定的步驟與方法,常因個人經驗與所選擇設計方式的不同,導致過於感性的思維模式,也造就了理性建築設計教學的挑戰。此研究針對題目設定與設計邏輯的關係,試圖避開操作者可預期的結果,並藉過程中不同階段性的操作設定,試圖建立一種設計邏輯發展的依據。</p> <p>&nbsp;</p><p>Traditionally, architecture design studio requires few exercises per semester for students to practice design method and develop design thinking. As design exercises often direct design approach and also establish expectation of outcome, there is no guaranty procedure or design method to follow in order to achieve the best outcome. Since design development heavily based on experience of operation and choice of approach, sensible thinking process is often involved and sets challenge for rational architectural pedagogy. This research aims to exam the design thinking process of students by setting up specific design exercise to avoid predictable operation process, in order to direct specific design approach according to established guidance for further development. </p> <p>&nbsp;</p>


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 746 ◽  
Author(s):  
Lei Song ◽  
Lijun Huang ◽  
Bo Long ◽  
Fusheng Li

Transformerless grid-connected inverters are of great industrial value in photovoltaic power generation. However, the direct current (DC) induced into the inverter’s output degrades the power quality of the grid. Recently, a back-propagation neural work proportional–integral–derivative (BP-PID) scheme has proven helpful in solving this problem. However, this scheme can be improved by reducing the suppressing time and overshoot. A genetic algorithm (GA)-based DC current minimization scheme, namely the genetic-algorithm-based BP-PID (GA-BP-PID) scheme, was established in this study. In this scheme, GA was used off-line to optimize the initial weights within the BP neural network. Subsequently, the optimal weight was applied to the online DC current suppression process. Compared with the BP-PID scheme, the proposed scheme can reduce the suppressing time by 59% and restrain the overshoot. A prototype of the proposed scheme was implemented and tested on experimental hardware as a proof of concept. The results of the scheme were verified using a three-phase inverter experiment. The novel GA-PB-PID scheme proposed in this study was proven efficient in reducing the suppressing time and overshoot.


2018 ◽  
Vol 941 ◽  
pp. 2522-2527
Author(s):  
Sylvio Schneider ◽  
Martina Selig ◽  
Verena Keil ◽  
Matthias Lehmann ◽  
Andreas H. Foitzik ◽  
...  

Smartphones are developing into all-purposes devices. In the present work, the employment/application of smartphones as medical devices in home care and point-of-care (POC) diagnostics are investigated in the analysis of Lateral Flow Assays (LFA). A smartphone-based LFA reader was developed for the quantitative analysis of D-Dimer – a biomarker indicating e.g. thrombotic event or danger of embolism.The proof-of-concept has been shown with multiple smartphones in establishing: (I) Optimal dimensions of the LFA cell of 72.11mm distance of smartphone to D-Dimer test leading to a coefficients of variances (CV) between 0.8% and 4.2%. (II) Inter-device investigations: CVs around 13.5%; a limit of detection (LOD) of 100ng/ml (DDU) D-Dimer. (III) Inter-smartphone investigations: CV about 16%, a limit of detection (LOD) at 66.4ng/ml (DDU). (IV) Calibrations: CV and LOD of three smartphones are comparable to the commercial available LFA reader. Further development to put the multiple smartphone-based LFA reader on the market.


Sign in / Sign up

Export Citation Format

Share Document